homehome Home chatchat Notifications


The safest locks might be those encrypted by passwords transmitted through the body

Your body is the key now.

Tibi Puiu
October 5, 2016 @ 4:13 pm

share Share

iot-body-password

Using low-frequency signals, UW researchers have found a way to transmit passwords through the human body. They claim this provides more security. Credit: Mark Stone/University of Washington

The Internet of Things (IoT) means more and more household items will become digitized and networked. Some of the most popular IoT items will be door locks and University of Washington researchers are proposing a novel security technology to keep these safe from hackers. Their idea involves unlocking smart doors with your smartphone by using the human body as the signal transfer medium. Since no wireless or Bluetooth is involved, there is no risk of having your password stolen from airborne radiowaves.

“Let’s say I want to open a door using an electronic smart lock,” said Mehrdad Hessar, a doctoral student at UW and one of the leader authors, in a statement. “I can touch the doorknob and touch the fingerprint sensor on my phone and transmit my secret credentials through my body to open the door, without leaking that personal information over the air.”

Our bodies are actually good conductors of electricity, which most of the time is undesirable. But this property can be used to our advantage, the UW researchers believe.

Their technology is based on low-frequency signals whose current is so low they can’t be felt by the human body, yet high enough to transmit data. To demonstrate, ten volunteers placed their index fingers on the fingerprint sensors of either an iPhone or Lenovo taptop. The UW-developed app then transmitted a signal through the finger, to the rest of the body and ultimately to a custom receiver which came in contact with a part of the volunteer’s body.

The technology could be used to open smart locks. Just hold one hand on the phone's fingerprint sensor and the other on the door's handle. Credit: Vikram Iyer, University of Washington

The technology could be used to open smart locks. Just hold one hand on the phone’s fingerprint sensor and the other on the door’s handle. Credit: Vikram Iyer, University of Washington

Results suggest this technique can achieve a data transfer of 50 bits per second if a laptop’s touch pad is used or 25 bits per second using the finger print sensor. You won’t be using your body to stream Netflix anytime soon, but the rate is more than enough to transmit a password made of a few characters (bytes). Better data transfer can be achieved if the sensors’ manufacturers share their software, the UW team said.

“We showed that it works in different postures like standing, sitting and sleeping,” said co-lead author Vikram Iyer, a UW electrical engineering doctoral student. “We can also get a strong signal throughout your body. The receivers can be anywhere — on your leg, chest, hands — and still work.”

At this point is worth noting that while your phone’s fingerprint sensor stores and analyzes your unique fingerprint pattern, the UW technology is totally unrelated. It just uses the sensor as a transmission medium and your fingerprints aren’t involved in any way in the process.

“Fingerprint sensors have so far been used as an input device. What is cool is that we’ve shown for the first time that fingerprint sensors can be re-purposed to send out information that is confined to the body,” said senior author Shyam Gollakota, UW assistant professor of computer science and engineering.

Besides opening the future’s annoying internet-enabled door locks, the technology could prove useful in the medical sector. For instance, glucose monitors or insulin pumps could use body-transmitted passwords to confirm someone’s identity before sending or sharing data.

The UW technique was described in a paper presented in September at the 2016 Association for Computing Machinery’s International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2016) in Germany.

share Share

Future Windows Could Be Made of Wood, Rice, and Egg Whites

Simple materials could turn wood into a greener glass alternative.

Researchers Turn 'Moon Dust' Into Solar Panels That Could Power Future Space Cities

"Moonglass" could one day keep the lights on.

Ford Pinto used to be the classic example of a dangerous car. The Cybertruck is worse

Is the Cybertruck bound to be worse than the infamous Pinto?

Archaeologists Find Neanderthal Stone Tool Technology in China

A surprising cache of stone tools unearthed in China closely resembles Neanderthal tech from Ice Age Europe.

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.