gear Push settings
It takes over a billion years of high pressure cooking deep inside the Earth's mantle to make diamonds. But this synthetic variety took just a quarter of an hour to make.
If your heart beats irregularly, here is a graphene tattoo that can keep your heartbeat in check, even better than a pacemaker.
It might provide relief to millions of people suffering from spinal cord injuries.
The wonder material is starting to show its practical potential.
If it has carbon, this research team is interested in baking it to a crisp.
Another remarkable application for graphene.
The marriage of these two technologies can only mean something great is in store.
Graphene aline can be challenging to work with on its own, but composites are already functional.
Graphene, more like gra-fine, right guys?
They say nothing lasts forever -- but that's not really true.
A new step forward that might make graphene mainstream.
Bottoms up!
It means that we could one day build amazing electronics with graphene.
The future of shoes might be graphene.
The best part? The spiders themselves produce it.
Desalination might one day be as easy as passing water through a sieve.
A novel and better way to make graphene into a semiconductor.
Is there anything graphene can't do?
The process takes 30 minutes and is 10 times faster than previous methods.
Nothing silly about these findings. Except the putty.
Researchers have developed a new graphene-based elastomer that can revolutionize prosthetic skin.
University of Wisconsin-Madison engineers devised a new method that grows graphene nanoribbons directly on a germanium wafer. The ribbons are of excellent quality and the technique is compatible with current manufacturing methods. These sort of ribbons have been heralded by industry experts as the component of the future which will make electronics faster and more efficient. The only thing that's been missing until now was a sound way to make them.
After graphene proved to be one of the greatest discovery of the century, material scientists became inspired to see if other 2D meshes (just one atom thick layer of material) could be made from other elements. In time, we've heared about silicene, phosphorene or germanene. Now, a group from China reports for the first time stanene: a honeycomb 2D arrangement of tin (Sn) atoms, with a a bismuth telluride support that buckles the whole structure. Stanene is extremely exciting because it's been previously theorized that it could transfer electricity without heat loss, implying huge energy savings and increased performance for semiconductor applications.
By now, we've all hopefully at least heard of graphene, the new wonder material that promises to revolutionize a swarm of applications. But now, a team of researchers from Finland have predicted the existence of atomically thin, free-standing 2D liquid phase - a liquid analogue of graphene.
A group of international researchers unveiled the world's thinnest light bulb. Remarkably it uses a carbon-based filament, just like Thomas Edison used in 1879 for the first truly commercially-viable incandescent bulb. Unlike Edison, however, the group used carbon in its pure form and ultimate size limit - one atom-thick graphene sheets. Remarkably, the tiny bulb emits light visible to the naked eye. Of course, these sort of designs aren't about setting milestones, though it's always interesting to see how low or high down the scale you can go with engineering. Mostly, graphene-based light sources might prove useful for optical communications where bits are transmitted via packets of photons, instead of electrons.
Graphene - the one atom thick sheet of carbon arranged in a hexagon lattice - is the strongest material known to man, and spider silk is one of the strongest found in nature, second only to limpet teeth. Heck, why not combine the two? Sounds silly, but it surprisingly worked when Nicola Pugno of the University of Trento, Italy sprayed spiders with both graphene particles and carbon nanotubes. The spiders weaved silk infused with the materials, and in some cases the silk was 3.5 times stronger than its natural counterpart. The resulting fiber is tougher than "synthetic polymeric high performance fibers (e.g. Kevlar49) and even the current toughest knotted fibers,” according to the paper published in Materials Science, which obviously entails a lot of real-life applications, industrial or otherwise.
A rather surprising study found that graphene's imperfections can actually be used to improve fuel cell efficiency. Researchers from Northwestern University worked together with scientists of five other institutes to show that defective graphene actually works as the world's thinnest proton channel—only one atom thick.
A while ago I wrote that the applications for graphene are endless, and it seems like scientists just want to make prove me right - University of Manchester scientists have used graphene to target and neutralise cancer stem cells while leaving healthy cells unharmed.
Chinese researchers ran simulations and found that a pentagon-containing version of graphene is theoretically stable. The 2D allotrope of carbon is made up of atom-thick sheet of carbon atoms arranged in a repeating pentagon pattern, while graphene is made up of carbon atoms arranged in a hexagon pattern, like a chicken wire. Graphene is the strongest material in the […]
A PhD student from Netherlands has demonstrated a technique which could massively cut down the production costs of graphene. With this technique, producing the “wonder material” could be 1,000 times cheaper. For his thesis, Shou-En Zhu from the Delft University of Technology described a way to create an “endless sheet” of graphene. The way he does it […]
A team of UK researchers led by none other but Nobel Laureate Andre Geim – one of persons involved in graphene’s discovery in 2004 – has shown that the wondrous two dimensional material graphene can used as a proton exchange membrane in fuel cells. The find took everybody by surprise since no one expected graphene could […]
It might not come as a surprise to hear that the world’s strongest material, graphene, was found to be a great impact absorber as well. After all, there always seems to be a study that adds to the growing list of graphene’s useful properties, be its lightness, flexibility, or electrical conductivity. It’s been labeled as […]
Graphene, the wonder material shows its potential once again: now, using graphene and rubber bands, engineers have created a flexible sensor which has significant medical value and can be made cheaply. You really should know about graphene by now – we’ve written dozens of articles about it just in the past couple of years; but […]
Materials found in nature often speak of at least one comprise. Metals for instance are highly conductive, but not transparent. Plastics on the other hand can be made to be transparent, but they’re very poor electrical conductors. This annoying tradeoff has aggravated scientists for some time in their efforts to design better solar cells or […]
Chemical researchers at Penn State and Shinshu University report they’ve managed to isolate strong, stretchable graphene oxide fibers that are easily scrolled into yarns and have strengths approaching that of Kevlar. The fiber can be then further refined to act as a powerful and lightweight electrical conductor or can be directly used as a higher […]
It’s official – graphene is the wonder material of the millennium. A team of researchers at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the National Univ. of Singapore found that thermal conductivity of graphene diverges with the size of the samples. What’s the big deal? Well, the findings show that the thermal […]
A team led by Jonathan Coleman at Trinity College Dublin reports they’ve patented a technique that can easily produce large quantities of quality graphene. The method is so simple that the researchers have even been able to scale it down for use in a kitchen blender. The exact ‘recipe’ has yet to be disclosed, but nevertheless […]
I feel like a broken record – graphene is awesome at this, graphene is awesome at that… graphene is just awesome! A few months ago, we were telling you about the first graphene ear buds, which were really promising, but researchers still had a lot of work to make them commercially viable. Well, they’ve turned it up […]
We’ve written extensively about graphene here on ZME Science, awarding it much praise and promise. Truly, if you read a bit about what graphene can do [strength, conductivity, cost, etc], you’ll soon learn to love it. So, why aren’t we seeing graphene used everywhere, from computers to aerospace like so many science papers herald its […]
Every time a new manufacturing or development technology concerning solar cells was introduced, the futurists and tech pundits were quick to hail the coming of a new generation. The first were the monocrystal silicon cells doped with Phosphorus and Boron in a pn-junction; these are expensive to produce, yet comprise 80% of the total solar panel […]
As a kid, looking at the Predator movies gave me goosebumps; it wasn’t the physical superiority of the Predator, but the technological advantages. I mean, he has all that shooting stuff, and teleportation and camouflage, and the vision… it was all too much! But the way science is crazily developing, we’re already starting to experiment […]
Ultra strong, a fantastic electrical conductor, and even suitable for better beer storage, graphene is dazzling the w0rld with its potential applications. Now, it seems there’s another use to add for the growing list of applications for the atom thick hexagon carbon structure. Scientists at Queen Mary University of London and the Cambridge Graphene Centre found that […]
Graphene, a 2-D array of carbon atoms arranged in a hexagon shape, is one of the most researched material today. We’ve written extensively before about its properties and uses, and indeed the future seems to belong to graphene where it’s sure to dominate the electronics industry. Before this can happen, however, graphene production and manipulation […]
In transportation, there aren’t that many alternative energy sources like in conventional industry, where you can supply a plant or even a home using solar, hydro or wind power. Before electric vehicles make a significant contribution (don’t hold your breath for too long), alternative means of fueling engines need to be found. This is why […]
Carbon nanotubes and graphene have been hailed time and again as the wonder materials that will change the face of technology in the future. Before silicon can be dethroned from its reigning position, however, a lot of manufacturing issues need to be addressed. A new technique developed by researchers at University of Illinois provides a […]
The wonder material Graphene, the new wonder material that promises to open a new age in technology, just got a whole lot better. Researchers have reported improved interfacing of graphene with other 2-D materials – basically ‘growing’ graphene on silver. This resulted in an exceptionally pristine sample, presenting opportunities for ultrafast electronics and advanced optics/ […]
A team from Columbia Engineering researchers, led by Mechanical Engineering Professor James Hone and Electrical Engineering Professor Kenneth Shepard has managed to take advantage of graphene’s unique properties (it’s strength and electric conduction) to create a nano-mechanical system that can create FM signals – in other words, the world’s smallest radio. “This work is significant […]
Scientists at Rice University have developed a method that combined graphene nanoribbons (GNRs) and a polymer to produce a lightweight storage medium for compressed gas. The resulting material may prove to be extremely useful in the auto industry where manufacturers are trying use compressed natural gas to its fullest potential or in the beverage industry […]
In an inspiring breakthrough, Stanford researchers have created the first ever working computer made entirely out of carbon nanotubes. The technology is still very infant, as the computer operates on just one bit of information, and can only count to 32. Theoretically, however, it can be scaled up to perform billions of operations given enough memory. […]
As electronics become ever thinner, smaller and faster, scientists always need to think ahead and develop solutions to accommodate the computing needs of the future. For one, it becomes clearer with each passing day that silicon – the most used material in electronics – can’t be used anymore for tomorrow’s tech since we’re nearing its […]