homehome Home chatchat Notifications


White dwarf 'laboratory' suggests stars and planets could actually grow in tandem

We still have a lot to learn about how celestial bodies form.

Jordan Strickler
November 14, 2022 @ 5:08 pm

share Share

It was previously believed that planets form only after a star has reached its final size, but new research published in Nature Astronomy suggests that stars and planets can actually ‘grow up’ together.

Our Solar System could have began much earlier than previously believed.
New research on white dwarf stars found that planets could grow at the same time as their host stars. Image credits: Amanda Smith.

A study of some of the oldest stars in the universe suggests that the building blocks of planets such as Jupiter and Saturn can actually form while their host star is still developing. The research, led by the University of Cambridge, modifies our understanding of how planetary systems form — including our own Solar System.

Amy Bonsor, from Cambridge’s Institute of Astronomy and the study’s first author, and her team of international colleagues investigated the building blocks of planet formation by studying the atmospheres of 200 white dwarf stars in an attempt to answer this question.

“We have a pretty good idea of how planets form, but one outstanding question we’ve had is when they form: does planet formation start early, when the parent star is still growing, or millions of years later?” Bonsor asks. Luckily, we have some stellar labs to help us investigate this.

“Some white dwarfs are amazing laboratories because their thin atmospheres are almost like celestial graveyards,” Bonsor adds.

Planetary interiors are typically inaccessible to telescopes due to the planet’s atmosphere. However, there’s a subclass of white dwarfs known as “polluted” systems containing heavy elements such as magnesium, iron, and calcium which can make it easier to see deeper into the planet.

It is believed that these elements originated from small bodies, such as asteroids left over from planet formation, that crashed into white dwarfs and burned up in their atmospheres. Consequently, spectroscopic observations of polluted white dwarfs can probe the interiors of these shattered asteroids, providing astronomers with direct insight into their formation.

Building planets

Planet formation begins in a protoplanetary disc composed primarily of hydrogen, helium, and tiny ice and dust particles that orbit a young star. The current leading theory on how planets form has dust particles adhering to one another, forming larger and larger solid bodies over time. Some of these larger bodies will continue to accrete, becoming planets, while others, such as those that collided with white dwarfs in the current study, will remain asteroids.

“Our study complements a growing consensus in the field that planet formation got going early, with the first bodies forming concurrently with the star,” Bonsor said. “Analyses of polluted white dwarfs tell us that this radioactive melting process is a potentially ubiquitous mechanism affecting the formation of all extrasolar planets.”

According to the researchers’ spectroscopic-observation analysis, the mixture of elements observed in the atmospheres of these white dwarfs can only be explained if a large number of the original asteroids melted, causing heavy iron to sink to the core while lighter elements floated on the surface. This process, known as differentiation, is responsible for the iron-rich core of the Earth.

“The cause of the melting can only be attributed to very short-lived radioactive elements, which existed in the earliest stages of the planetary system but decay away in just a million years,” Bonsor said. “In other words, if these asteroids were melted by something which only exists for a very brief time at the dawn of the planetary system, then the process of planet formation must kick off very quickly.”

Jupiter and Saturn had ample time to grow to their current sizes, according to the study, which suggests that the early-formation scenario is likely accurate.

This is just the beginning – every time we find a new white dwarf, we can gather more evidence and learn more about how planets form,” Bonsor said. “We can trace elements like nickel and chromium and say how big an asteroid must have been when it formed its iron core. It’s amazing that we’re able to probe processes like this in exoplanetary systems.”

Researchers from the University of Oxford, the Ludwig-Maximilians-Universität in Munich, the University of Groningen, and the Max Planck Institute for Solar System Research in Gottingen also participated in the study.

share Share

An Asteroid Might Hit the Moon in 2032 and Turn It Into a Massive Fireworks Show from Earth

The next big space threat isn't to Earth. It's to the Moon.

This Colorful Galaxy Map Is So Detailed You Can See Stars Being Born

Astronomers unveil the most detailed portrait yet of a nearby spiral galaxy’s complex inner life

A NASA Spacecraft Just Spotted a Volcano on Mars Like We Have Never Seen Before

NASA's Mars Odyssey captures a surreal new image of Arsia Mons at sunrise

Astronomers Found a Volcano Hiding in Plain Sight on Mars

It's not active now, and it hasn't been active for some time, but it's a volcano.

The World’s Largest Camera Is About to Change Astronomy Forever

A new telescope camera promises a 10-year, 3.2-billion-pixel journey through the southern sky.

The Sun Will Annihilate Earth in 5 Billion Years But Life Could Move to Jupiter's Icy Moon Europa

When the Sun turns into a Red Giant, Europa could be life's final hope in the solar system.

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

A deep-sea telescope may have just caught dark matter in action for the first time.

Scientists Used Lasers To Finally Explain How Tiny Dunes Form -- And This Might Hold Clues to Other Worlds

Decoding how sand grains move and accumulate on Earth can also help scientists understand dune formation on Mars.

Astronomers Claim the Big Bang May Have Taken Place Inside a Black Hole

Was the “Big Bang” a cosmic rebound? New study suggests the Universe may have started inside a giant black hole.

Astronomers Just Found the Most Powerful Cosmic Event Since the Big Bang. It's At Least 25 Times Stronger Than Any Supernova

The rare blasts outshine supernovae and reshape how we study black holes.