homehome Home chatchat Notifications


Webb telescope finds carbon-based molecules in the atmosphere of a water planet. Could this be a sign of life?

This raises prospects about potentially habitable worlds elsewhere in the universe

Fermin Koop
September 15, 2023 @ 10:04 am

share Share

Scientists at NASA have found evidence of methane and carbon dioxide (CO2) in the atmosphere of K2-18 b, an exoplanet 8.6 times bigger than earth as Earth. The discovery offers a glimpse into a planet unlike anything in our Solar System and adds to recent studies that suggested K2-18 b could be an ocean planet with a hydrogen-rich atmosphere. There’s also a tantalizing molecule in the planet’s atmosphere.

planet
An artist’s concept shows what exoplanet K2-18 b could look like. Image credits: NASA, CSA, ESA, J. Olmsted (STScI), Science: N. Madhusudhan (Cambridge University)

The new data about the atmospheric properties of this exoplanet came from observations made with NASA’s James Webb Space Telescope (JWST). This new study builds on previous studies in 2020 and 2021 using Webb’s predecessors Hubble and Kepler. K2-18 b orbits the dwarf star K2-18 and lies light-years from Earth in the constellation Leo.

Researchers had previously suggested K2-18 belonged to a new class of exoplanets called “Hycean” worlds. The name comes from a combination of “hydrogen” and “ocean” as these worlds are covered in a hydrogen atmosphere and could support oceans. Water worlds are very interesting for astrobiologists because, without water, there can be no life. However, research on the habitability of Hycean worlds isn’t very detailed.

Using JWST’s instruments, this new study has identified methane and carbon dioxide in a hydrogen-rich atmosphere on K2-18 b. This supports the hypothesis that there may be a water ocean on the planet. The observations also provided the possible detection of a molecule called dimethyl sulfide (DMS). On Earth, DMS is only produced by living organisms.

“Our findings underscore the importance of considering diverse habitable environments in the search for life elsewhere,” Nikku Madhusudhan, an astronomer at the University of Cambridge and lead author of the paper announcing these results, said in a news release.

The mysteries of K2-18 b

K2-18 b lies in what NASA calls the habitable zone, a region around a star where planets with liquid water could be present. Its interior likely has a large mantle of high-pressure ice, similar to Neptune, but with a thinner hydrogen-rich atmosphere and an ocean-atmosphere. However, the ocean might be too hot to be habitable or liquid.

Image credits: NASA, CSA, ESA, J. Olmstead (STScI), N. Madhusudhan.

Describing the atmospheres of exoplanets such as K2-18 b involves discerning their gas composition and physical attributes. This is a very dynamic and challenging field in astronomy, particularly as these exoplanets are outshone by the glare of their bigger parent starts.

In order to overcome this, the researchers analyze can light from K2-18 b’s parent star as it passed through the exoplanet’s atmosphere. Imagine this: when the planet passes in front of its star, it blocks some of the star’s light. But another part of the star’s light passes right above the planet, through its atmosphere. This passage leaves traces that astronomers can review to better understand the exoplanet’s atmosphere.

“This result was only possible because of the extended wavelength range and unprecedented sensitivity of Webb, which enabled robust detection of spectral features with just two transits,” said Madhusudhan. “For comparison, one transit observation with Webb provided comparable precision to eight observations with Hubble.”

Next, the team intends to do follow-up research that they hope will further validate their findings and provide new insight into the environmental conditions on K2-18 b. They will use Webb’s Mid-InfraRed Instrument (MIRI) spectrograph to look for chemical signatures called biomarkers, including dimethyl sulfide (DMS), which could indicate the presence of biological activity.

Researchers are particularly excited about the potential of this molecule because on Earth, DMS is only produced by life.

If the same were to be reported on this planet, it would be perhaps the biggest sign of life outside our solar system.

The paper has been published in The Astrophysical Journal Letters.

share Share

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bycicle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.