homehome Home chatchat Notifications


Voyager-1 on the brink of interstellar flight

Launched in in the late 1970’s in a mission to study the planets Jupiter, Saturn and their respective satellites, the two Voyager probes have been most certainly put to a more pioneering goal and sent into outer space after having completed their last missions. Currently, Voyager-1 is the most distant human-made object from Earth and […]

Tibi Puiu
June 16, 2011 @ 10:37 am

share Share

Artist impression of the Voyager-1 spacecraft, and its partner, Voyager-2, as they're approaching the edge of the Sun's protective bubble, separating them from interstellar flight. (c) NASA/JPL-Caltech

Artist impression of the Voyager-1 spacecraft, and its partner, Voyager-2, as they're approaching the edge of the Sun's protective bubble, separating them from interstellar flight. (c) NASA/JPL-Caltech

Launched in in the late 1970’s in a mission to study the planets Jupiter, Saturn and their respective satellites, the two Voyager probes have been most certainly put to a more pioneering goal and sent into outer space after having completed their last missions. Currently, Voyager-1 is the most distant human-made object from Earth and is now quite ready the break the barrier that separates our solar system from interstellar space.

Right now, Voyager is at the so called ‘heliosheath‘ limit, a boundary layer where particles streaming from the Sun clash with the gases of the galaxy.

“We’re in this mixed-up region where the Sun still has some influence,” says Stamatios Krimigis, a physicist at the Applied Physics Laboratory of Johns Hopkins University in Laurel, Maryland. “It’s certainly not what we thought.”

Scientists caught off guard by mixed space environment

Starting from December 2010, reports have indicated that the outward speed of the charged particles streaming from the sun have slowed to almost zero, something entirely unexpected by scientists. This stagnation has continued well thought out February 2011, which physicists now believe this to be a thick “transition zone” at the edge of our solar system. This boundary has caught everybody by surprise, since not even a theory was formulated in which interstellar gases mix with almost zero velocity sun particles. Krimigis says it may even be possible that this is, in fact, what interstellar space looks like.

“We may have crossed and don’t know it, because nobody has a model that describes what we’re seeing,” he says.

Voyager-1 should break into interstellar space at any time, computations show

To better understand what kind of environmnet Voyager-1 is heading through, Krimigis and colleagues combined this new Voyager data with similar measurements from the ion and neutral camera on Cassini’s magnetospheric imaging instrument, which collects data on neutral atoms streaming into our solar system from the outside.

What preliminary computations on the data shows is that the boundary layer between interstellar flight and the “solar system bubble” is likely somewhere between 10 and 14 billion miles from the Sun, most likely 11 million miles. Voyager is already 11 billion miles in, which means it could cross into interstellar flight at any time from now on.

“These calculations show we’re getting close, but how close? That’s what we don’t know, but Voyager 1 speeds outward a billion miles every three years, so we may not have long to wait,” said Ed Stone, Voyager project scientist, based at the California Institute of Technology in Pasadena.

MORE RELATED: Harvesting gas from Uranus could power interstellar flight

Soon enough, indeed, Voyager-1 will become the first man made object to completely leave our solar system, and travel far enough as it can. It’s plutonium power plant will allow it to operate smoothly until at least 2020, and “we will continue to be taking data”, says Krimigis. Even well before 2020, it will be able to continue its space journey. It is expected to pass the constellation Camelopardalis in around 40,000 years.

Voyager-1’s sister probe, Voyager-2, is currently lagging behind about 2 billion miles but it will also most certainly reach the interstellar barrier in about 6 years.

The new findings have been reported by Krimigis and his colleagues in this week’s edition of Nature.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

Should we treat Mars as a space archaeology museum? This researcher believes so

Mars isn’t just a cold, barren rock. Anthropologists argue that the tracks of rovers and broken probes are archaeological treasures.

Proba-3: The Budget Mission That Creates Solar Eclipses on Demand

Now scientists won't have to travel from one place to another to observe solar eclipses. They can create their own eclipses lasting for hours.

This Supermassive Black Hole Shot Out a Jet of Energy Unlike Anything We've Seen Before

A gamma-ray flare from a black hole 6.5 billion times the Sun’s mass leaves scientists stunned.

Astronauts will be making sake on the ISS — and a cosmic bottle will cost $650,000

Astronauts aboard the ISS are brewing more than just discoveries — they’re testing how sake ferments in space.

Superflares on Sun-Like Stars Are Much More Common Than We Thought

Sun-like stars release massive quantities of radiation into space more often than previously believed.

Astronomers Just Found Stars That Mimic Pulsars -- And This May Explain Mysterious Radio Pulses in Space

A white dwarf/M dwarf binary could be the secret.

These Satellites Are About to Create Artificial Solar Eclipses — And Unlock the Sun's Secrets

Two spacecraft will create artificial eclipses to study the Sun’s corona.

Mars Dust Storms Can Engulf Entire Planet, Shutting Down Rovers and Endangering Astronauts — Now We Know Why

Warm days may ignite the Red Planet’s huge dust storms.

The Smallest Asteroids Ever Detected Could Be a Game-Changer for Planetary Defense

A new technique allowed scientists to spot the smallest asteroids ever detected in the main belt.