homehome Home chatchat Notifications


Breaking: Uranus smells like farts

An astronaut in the midst of Uranus' top clouds would be able to smell a rotten egg-like stench -- if he didn't die first.

Tibi Puiu
April 23, 2018 @ 9:03 pm

share Share

I know, I know — another Uranus joke. But in all seriousness, scientists just reported in the journal Nature Astronomy that the icy planet’s atmosphere contains significant amounts of hydrogen sulfide. Apart from the poetic significance of knowing Uranus basically smells like farts, the discovery might actually help astronomers understand how our early solar system formed and evolved.

Uranus as a featureless disc, photographed by Voyager 2 in 1986. Credit: Wikimedia Commons.

Uranus as a featureless disc, photographed by Voyager 2 in 1986. Credit: Wikimedia Commons.

For some time, scientists had presumed that the planet’s clouds contained hydrogen sulfide and ammonia. However, this was more of an inference rather than a direct observation and was hinted by the absence of certain wavelengths of light. Now, new and improved measurements obtained by using the 8-meter Gemini North telescope on Hawaii’s Mauna Kea have detected the presence of hydrogen sulfide (an unpleasant gas that most people avoid) in Uranus’s cloud tops.

The telescope’s spectrometer measured reflected sunlight from a region directly above the main visible cloud layer in Uranus’s atmosphere, according to Patrick Irwin, lead author of the new paper and researcher at the University of Oxford, UK. It’s interesting to note that Gemini’s Near-Infrared Integral Field Spectrometer (NIFS) was designed to study explosive environments around the supermassive black holes found at the center of far-away galaxies. The fact that its use has been extended to solve a longstanding mystery in our solar system is impressive, to say the least.

Uranus and Neptune both formed in the colder part of the solar nebulae that seeded the planets billions of years ago. The team directly detected hydrogen sulfide at 0.4-0.8 parts per million as ice in its cloud tops. At this concentration, an astronaut sniffing Uranus’ air would sense a rotten-egg, fart-like smell (ignoring the fact that the cold and the rest of the atmosphere’s composition would kill him). This is an observation that contrasts sharply with the inner gas giant planets Jupiter and Saturn, where no hydrogen sulfide is seen above the clouds — instead, ammonia is observed. What’s more, the spectral lines suggest that there is less ammonia in Uranus than expected, which is another clue speaking to the difference in the formation of the two sets of planets.

“During our Solar System’s formation the balance between nitrogen and sulfur (and hence ammonia and Uranus’s newly-detected hydrogen sulfide) was determined by the temperature and location of planet’s formation,” said Leigh Fletcher, a member of the research team from the University of Leicester in the UK.

According to Fletcher, this was a very challenging work because when a cloud deck forms, it locks gases away in a deep internal reservoir, hidden away beneath the levels that we can usually see with our telescopes.

“Only a tiny amount remains above the clouds as a saturated vapour,” said Fletcher. “And this is why it is so challenging to capture the signatures of ammonia and hydrogen sulfide above cloud decks of Uranus. The superior capabilities of Gemini finally gave us that lucky break,” concludes Fletcher.

Although it might smell foul, Uranus has many valuable lessons to teach scientists about the early history of the solar systems and the conditions required for icy worlds to form around stars light-years away from our sun.

Scientific reference: Patrick G. J. Irwin et al, Detection of hydrogen sulfide above the clouds in Uranus’s atmosphere, Nature Astronomy (2018). DOI: 10.1038/s41550-018-0432-1.

share Share

Your gut has a secret weapon against 'forever chemicals': microbes

Our bodies have some surprising allies sometimes.

High IQ People Are Strikingly Better at Forecasting the Future

New study shows intelligence shapes our ability to forecast life events accurately.

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Your Personal Air Defense System Is Here and It’s Built to Vaporize Up to 30 Mosquitoes per Second with Lasers

LiDAR-guided Photon Matrix claims to fell 30 mosquitoes a second, but questions remain.

Scientists Ranked the Most Hydrating Drinks and Water Didn't Win

Milk is more hydrating than water. Here's why.

Methane Leaks from Fossil Fuels Hit Record Highs. And We're Still Looking the Other Way

Powerful leaks, patchy action, and untapped fixes keep methane near record highs in 2024.

Astronomers Found a Star That Exploded Twice Before Dying

A rare double explosion in space may rewrite supernova science.

This Enzyme-Infused Concrete Could Turn Buildings into CO2 Sponges

A new study offers a greener path for concrete, the world’s dirtiest building material.

Buried in a Pot, Preserved by Time: Ancient Egyptian Skeleton Yields First Full Genome

DNA from a 4,500-year-old skeleton reveals ancestry links between North Africa and the Fertile Crescent.

AI Helped Decode a 3,000-Year-Old Babylonian Hymn That Describes a City More Welcoming Than You’d Expect

Rediscovered text reveals daily life and ideals of ancient Babylon.