homehome Home chatchat Notifications


Astronomers use gravity to zoom in on incredibly distant star

A new take on the whole 'twinkle twinkle' thing.

Mihai Andrei
April 2, 2018 @ 6:34 pm

share Share

Scientists have used a “cosmic magnifying glass” to image two twinkling stars, billions of light years away, magnifying them over 2,000 times, revealing a lot about the surrounding dark matter in the process.

Image of Icarus (MACS J1149+2223 Lensed Star 1)
Credit: NASA, ESA, and P. Kelly (University of Minnesota).

When you’re studying stars millions and billions of light years away, you need all the help you can get — thankfully, the universe sometimes lends an unexpected hand. This unexpected hand comes in the form of gravity.

In the simplest of terms, astronomers can use clusters of massive galaxies as a lens, to zoom in on some areas of space.  According to general relativity, light follows the curvature of spacetime. Consequently, when light passes around a massive object, it bends. This means that the light from an object on the other side will bend towards an observer’s eye, just like with an ordinary lens. But unlike an optical lens, a gravitational lens has no single focal point, but a focal line.

If it all sounds complex, well, it is — but it’s already a rather common technique in astronomy.

Gravitational lensing can happen on all scales, but it’s especially effective at extremely large scales. Everything bends light (even our own bodies, by an incredibly small amount), but the gravitational field galaxies and clusters of galaxies can lens light enough by observable amounts. In two recent studies, two teams of authors repeatedly observed parts of the sky that contain massive clusters of galaxies, using the Hubble telescope.

In the two studies, researchers report ‘twinkling’ stars. There are several reasons why stars twinkle — which actually means they change brightness abruptly. For instance, they can undergo explosive events (such as a supernova eruption) — and in one case, this was actually the case. But in the other case, the twinkle wasn’t from the star itself — it was due to the relative motion between the lensed star and the lensing cluster, which made the light seem to turn brighter and then dimmer.

By studying these twinkles, researchers can not only infer the physical properties of the star themselves — but also study the distribution of dark matter around them. Dark matter is a type of matter that may constitute about 80% of the total matter in the universe, but we don’t really know that much about it because we can’t study it directly — so far, we’ve only noticed its gravitational effects.

Journal Reference:

  • Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens. DOI: 10.1038/s41550-018-0430-3
  • Two peculiar fast transients in a strongly lensed host galaxy. DOI: 10.1038_s41550-018-0405-4

share Share

What Happens When You Throw a Paper Plane From Space? These Physicists Found Out

A simulated A4 paper plane takes a death dive from the ISS for science.

The Oldest Dog Breed's DNA Reveals How Humans Conquered the Arctic — and You’ve Probably Never Heard of It

Qimmeq dogs have pulled Inuit sleds for 1,000 years — now, they need help to survive.

A New Vaccine Could Stop One of the Deadliest Forms of Breast Cancer Before It Starts

A phase 1 trial hints at a new era in cancer prevention

After 700 Years Underwater Divers Recovered 80-Ton Blocks from the Long-Lost Lighthouse of Alexandria

Divered recover 22 colossal blocks from one of the ancient world's greatest marvels.

Scientists Discover 9,000 Miles of Ancient Riverbeds on Mars. The Red Planet May Have Been Wet for Millions of Years

A new look at Mars makes you wonder just how wet it really was.

This Is Why Human Faces Look So Different From Neanderthals

Your face stops growing in a way that neanderthals' never did.

Ozempic Is Changing More Than Waistlines as Scientists Wise Up to Concerning Side Effects

But GLP-1 drugs also offer many benefits beyond weight loss.

Researchers stop Parkinson's symptoms in mice using a copper supplement. Could humans be next?

Could we stop Parkinson's by feeding neurons copper?

There's a massive, ancient river system under Antarctica's ice sheet

This has big implications for our climate models.

I Don’t Know Who Needs to Hear This, But It's Okay to Drink Coffee in the Summer

Finally, some good news.