homehome Home chatchat Notifications


Titan is moving away from Saturn 100 times faster than expected

New findings from NASA’s Cassini space probe challenge our understanding of tidal forces.

Florian Lienert
June 11, 2020 @ 12:48 pm

share Share

Saturn’s moon Titan, an icy world shrouded by a hazy atmosphere, is the second-largest moon in our solar system, nearly 50% larger than the Earth’s moon.

In a new study published in Nature Astronomy, a team of researchers report that Titan may be straying from its planet at a much faster rate than anticipated.

Titan passing in front of Saturn — slowly drifting apart, bit by bit. Image credits: NASA / JPL.

Every moon slowly drifts away from its planet due to tidal forces. The orbiting moon exerts a gravitational pull on the planet as it orbits, creating a temporary bulge as it passes over — this is also the reason why we have high tides and low tides on Earth, for instance.

The planet’s spin sweeps the bulge forward ever so slightly, which in turn pulls on the moon and transfers it into a higher orbit. That way, the moon moves away from the planet ever so slightly each year.

So long, old friend

Previously, scientists had estimated the rate Titan moves away from Saturn to be around 0.1 cm per year. But according to recent data gathered by NASA’s Cassini spacecraft, Titan actually drifts away 100 times faster than expected, at a rate of approximately 11 centimeters each year.

These findings, while contradicting previous predictions, agree with a hypothesis proposed in 2016 by Jim Fuller, Jing Luan, and Eliot Quataert. The researchers proposed a mechanism also observed in binary stars called resonance locking, which could explain the fast migration seen in Saturn’s moon Titan. This is a process where the gravitational force of the moon squeezes the planet and forces it to oscillate. In this case, the orbital motion of Titan lines up with internal motions inside Saturn increasing the efficiency of the tidal forces and leading to a faster migration rate.

This finding also bears significant implications for the formation of Saturn’s rings and moon system (which hosts over 80 moons).

If the speed at which Titan is straying from Saturn is so large now, it implies that it was also larger in the past. This means that Titan, previously thought to have formed at a similar distance from its planet as where it is now, may have formed much closer to Saturn and then migrated outwards. This changes our understanding not only of how Saturn’s rings and moons formed but also interactions in binary star systems, galaxies, and exoplanets in close orbit to their stars.

Now, scientists await more data from the Juno space probe orbiting Jupiter which could validate the theory of resonance locking further.

share Share

Researchers can't rule out the possibility of life existing on Titan

It wouldn't be very much, but it's exciting anyway.

Earth Might Run Out of Room for Satellites by 2100 Because of Greenhouse Gases

Satellite highways may break down due to greenhouse gases in the uppermost layers of the atmosphere.

Researchers Turn 'Moon Dust' Into Solar Panels That Could Power Future Space Cities

"Moonglass" could one day keep the lights on.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.

The most successful space telescope you never heard of just shut down

An astronomer says goodbye to Gaia, the satellite that mapped the galaxy.

Astronauts are about to grow mushrooms in space for the first time. It could help us live on Mars

Mushrooms could become the ultimate food for living in colonies on the moon and Mars.

Dark Energy Might Be Fading and That Could Flip the Universe’s Fate

Astronomers discover hints that the force driving cosmic expansion could be fading

Curiosity Just Found Mars' Biggest Organic Molecules Yet. It Could Be A Sign of Life

The discovery of long-chain organic compounds in a 3.7-billion-year-old rock raises new questions about the Red Planet’s past habitability.