homehome Home chatchat Notifications


Supernova study might change how speed of light in vacuum is measured

Einstein’s theories suggest that light can not travel faster than c, a constant equal to the speed of light in a vacuum, which is 299,792,458 metres per second (by definition) or about 186,282.4 miles per second. All of our standing physical models are based on this assumption, and so far this idea has yet to […]

Tibi Puiu
June 25, 2014 @ 8:17 am

share Share

Einstein’s theories suggest that light can not travel faster than c, a constant equal to the speed of light in a vacuum, which is 299,792,458 metres per second (by definition) or about 186,282.4 miles per second. All of our standing physical models are based on this assumption, and so far this idea has yet to be proven wrong, despite the neutrino incident from CERN which was later found to be false (at some time neutrinos were found to travel slightly faster than photos, but this was later proven to be due an error in measuring). A study of a 25-year old supernova may lead to a revision of “c”, if its findings are found to be correct. As you might imagine, the implications are huge since the speed of light in vacuum is used as a constant in all astronomical calculations and observations.

Slower light

SN 1987A

image of SN 1987A.

SN 1987A was first observed in February, 1987 when it baffled some scientists with an intriguing anomaly. After a star collapses, traditionally a super nova should immediately emit a burst of neutrinos, followed by a time delayed burst of photons. In the case of SN 1987, this time delay it greater than it should have been as the optical light arrived roughly 7.7 hours after the neutrinos, or 4.7 hours late instead of the expected 3 hours delay.

Why this differences? Three scenarios have been proposed: the optical photons traveled slower than c, they were emitted later than expected, or they originated from a totally separate and irrelevant event. Typically the last scenario has been used to explain this phenomenon, but James Franson and colleagues at the University of Maryland claim they have found evidence that suggests that light doesn’t actually travel at c in a vacuum – a startling hypothesis which if found true will pose great implications for physics and astrophysics in particular.

When traveling through a medium like water or air, light gets slowed down because it meets all sorts of matter particles. In the case of the vacuum of space, Franson says a natural property of photons themselves, called “vacuum polarization,” causes a slow down. This causes the photon to split into an electron-positron pair that later recombines back to form a photon. Even if this split lasts for a moment, though, theory says that this phenomenon causes a gravitational potential between the two particle states.

The effect and final energy impact of this gravitational potential is so tiny that it only slightly affects the value of c, which is why it has been so difficult to notice it. The 1987 supernova presented an opportunity to accurately time photons as they travel 168,000 light-years to reach us, and the study suggests that the gravitational potential could easily lead to the observed delay of 4.7 hours.

The findings are no less controversial and to accurately confirm such a hypothesis you’d need some serious gear. Super-quick neutrino detectors would help shed light on this, tracking neutrinos back to their source. It’s not only about the gear either – you’d need to study at least a couple of dozen super novae to gather data of the required statistical significance to prove or disprove the paper. As almost always the case, scientists will have to wait many, many years until anything of the sorts can be done.

The paper appeared in the New Journal of Physics.

share Share

Biggest Modern Excavation in Tower of London Unearths the Stories of the Forgotten Inhabitants

As the dig deeper under the Tower of London they are unearthing as much history as stone.

Millions Of Users Are Turning To AI Jesus For Guidance And Experts Warn It Could Be Dangerous

AI chatbots posing as Jesus raise questions about profit, theology, and manipulation.

Can Giant Airbags Make Plane Crashes Survivable? Two Engineers Think So

Two young inventors designed an AI-powered system to cocoon planes before impact.

First Food to Boost Immunity: Why Blueberries Could Be Your Baby’s Best First Bite

Blueberries have the potential to give a sweet head start to your baby’s gut and immunity.

Ice Age People Used 32 Repeating Symbols in Caves Across the World. They May Reveal the First Steps Toward Writing

These simple dots and zigzags from 40,000 years ago may have been the world’s first symbols.

NASA Found Signs That Dwarf Planet Ceres May Have Once Supported Life

In its youth, the dwarf planet Ceres may have brewed a chemical banquet beneath its icy crust.

Nudists Are Furious Over Elon Musk's Plan to Expand SpaceX Launches in Florida -- And They're Fighting Back

A legal nude beach in Florida may become the latest casualty of the space race

A Pig Kidney Transplant Saved This Man's Life — And Now the FDA Is Betting It Could Save Thousands More

A New Hampshire man no longer needs dialysis thanks to a gene-edited pig kidney.

The Earliest Titanium Dental Implants From the 1980s Are Still Working Nearly 40 Years Later

Longest implant study shows titanium roots still going strong decades later.

Common Painkillers Are Also Fueling Antibiotic Resistance

The antibiotic is only one factor creating resistance. Common painkillers seem to supercharge the process.