ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Stars at Milky Way’s heart might be ‘immortal’, drawing energy from dark matter

Stars near the Milky Way's core may employ an exotic reaction involving dark matter to extended their lifetimes virtually indefinitely.

Tibi PuiubyTibi Puiu
June 26, 2024
in News, Space
A A
Edited and reviewed by Zoe Gordon
Share on FacebookShare on TwitterSubmit to Reddit
Credit: AI-generated illustration/DALL-E 3.

The Sun has been burning hydrogen fuel for a staggering 4.6 billion years and astrophysicists estimate it has another 7 to 8 billion years left before it sputters out and dies. All stars go through this lifecycle of formation, fuel consumption, and ultimate collapse — or do they?

Stars swirling in the violent galactic center of the Milky Way are exhibiting strange properties. A peculiar cluster of such stars could become “immortal” by continuously capturing and destroying dark matter particles in their cores, a new study suggests. In effect, such stars may be primarily fueled by dark matter instead of nuclear fusion.

Dark Matter Fuel

Researchers at Stockholm University in Sweden and Stanford University in California used computer simulations of stellar evolution on stars orbiting the galactic center. This is how they uncovered an intriguing phenomenon: dark matter particles, captured by these stars’ gravity, may frequently collide and “annihilate” each other inside the star. This process transforms dark matter into ordinary particles while releasing a significant amount of photons and electrons.

This exotic reaction could maintain the star’s stability, preventing its gravitational collapse at the end of its lifecycle after its regular supply of nuclear fuel runs out. The outward pressure effect could extend the star’s lifetime by up to 100-fold, making them practically immortal.

The investigation was spurred by the observation that many stars spotted near the Milky Way’s central supermassive black hole — known as Sagittarius A* and whose mass exceeds 4.3 million Suns — seem to be far younger than theories of stellar evolution predict.

Stars Defying Expectations

Stars nearby Sagittarius A* orbit around it at speeds of several thousand km/s. The origin of such inner stars, known as S-cluster stars, is shrouded in mystery due to the extreme environment at the galactic center. S-cluster stars orbit only three light-years away from the massive black hole.

To investigate this mystery, the researchers tested whether the stars could be drawing energy from the plentiful supply of dark matter thought to exist at the galactic center. The density of dark matter in a galaxy is highest near its center and decreases with distance outward. Astronomers infer its presence from the high rotational speeds of stars around the galactic center.

The computer simulations ultimately showed that the inclusion of dark matter annihilation in stellar dynamics solves many of the known inconsistencies in astronomers’ observations.

RelatedPosts

NASA researchers find two black holes heading for a merger in our cosmic neighborhood
Supermassive black hole sends radio echoes of its stellar dinner
The Milky Way is surrounded by a huge, hot halo of gas
Youngest ‘baby star’ ever discovered

“Our simulations show that stars can survive on dark matter as a fuel alone,” said lead co-author Isabelle John from Stockholm University, “and because there is an extremely large amount of dark matter near the Galactic Center, these stars become immortal, staying forever young, occupying a new, distinct, observable region of the HR diagram.”

John also noted that lighter stars might become very ‘puffy’ and lose parts of their outer layers. This phenomenon could explain the mysterious, so-called G-objects near the galactic center. These appear star-like but are surrounded by gas clouds.

Currently, observing individual stars close to the galactic center is difficult due to the high brightness of the area. However, upcoming telescopes will offer clearer views, allowing scientists to better understand this stellar population and verify the existence of the “dark main sequence”.

This study was published on the preprint server arXiv in May and has yet to undergo peer review.

Tags: black holedark mattermilky waySagittarius A*stars

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Astronomers See Inside The Core of a Dying Star For the First Time, Confirm How Heavy Atoms Are Made

byOrsola De Marco
4 weeks ago
News

A Supermassive Black Hole 36 Billion Times the Mass of the Sun Might Be the Heaviest Ever Found

byTibi Puiu
1 month ago
Astronomy

Scientists Have a Plan to Launch a Chip-Sized, Laser-Powered Spacecraft Toward a Nearby Black Hole and Wait 100 Years for It to Send a Signal Home

byJordan Strickler
1 month ago
News

Distant Exoplanet Triggers Stellar Flares and Triggers Its Own Destruction

byKimberly M. S. Cartier
1 month ago

Recent news

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

September 16, 2025

NASA invented wheels that never get punctured — and you can now buy them

September 16, 2025

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

September 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.