homehome Home chatchat Notifications


Pluto and its Moon Charon Formed Through a Cosmic "Kiss and Capture"

Until now, the thinking was that Pluto and Charon formed like Earth and our Moon. New research has flipped that script.

Jordan Strickler
January 7, 2025 @ 5:31 pm

share Share

Enhanced images of Pluto (right) and Charon (left), taken by the New Horizons spacecraft in 2015. Distance is not to scale. (Credit: NASA / Johns Hopkins University Applied Physics Laboratory / Southwest Research Institute)

In the frigid expanse of the Kuiper Belt, Pluto and Charon —one a dwarf planet, the other its unusually large moon— orbit each other like cosmic dance partners locked in a gravitational embrace. Scientists have spent decades trying to piece together how this system formed. Now, a new study from the University of Arizona published in Nature Geoscience proposes a surprising answer: a process called “kiss and capture.”

For years, the leading idea was that Pluto and Charon formed in a massive collision, similar to how Earth’s Moon came into existence billions of years ago. But the University of Arizona Lunar and Planetary Laboratory researchers found that there’s a problem with that explanation. Pluto and Charon are small, cold, and made mostly of rock and ice, which behave very differently from the hot, molten material involved in Earth’s collision with a Mars-sized body billions of years ago.

Instead of smashing together and behaving like fluids, Pluto and the object that would become Charon collided in a way that allowed them to briefly stick together before separating into the binary system we see today. This is what researchers are calling “kiss and capture.” The collision wasn’t so energetic that it destroyed the bodies, nor so gentle that they simply bounced apart. Instead, it was just the right amount of force to make them gravitationally bound.

The proposed “kiss and capture” method. (Credit: Robert Melikyan and Adeene Denton)

What makes this scenario possible is the material strength of icy and rocky worlds. When Pluto and proto-Charon collided, their solid, rigid surfaces resisted the extreme deformation typical of molten large bodies following a major planetary collision. As the two objects made contact, they temporarily formed a snowman-shaped structure, rotating together before separating. Computer simulations run by the researchers showed that this process naturally led to the formation of a stable binary system.

“Pluto and Charon are different – they’re smaller, colder and made primarily of rock and ice,” said Adeene Denton, the study’s lead researcher. “When we accounted for the actual strength of these materials, we discovered something completely unexpected. Most planetary collision scenarios are classified as ‘hit and run’ or ‘graze and merge.’ What we’ve discovered is something entirely different – a ‘kiss and capture’ scenario where the bodies collide, stick together briefly and then separate while remaining gravitationally bound.”

The simulations not only discovered the “kiss and capture” process; it also helped explain how Charon was formed and accounts for its current orbit around Pluto.

“The compelling thing about this study, is that the model parameters that work to capture Charon, end up putting it in the right orbit,” said senior study author Erik Asphaug, a professor in the Lunar and Planetary Laboratory. “You get two things right for the price of one.”  

While Pluto and Charon remained largely intact, the energy of the collision heated both bodies internally. This heat may have melted some of Pluto’s interior, potentially creating a subsurface ocean beneath its icy crust. Tidal forces—caused by the gravitational tug-of-war between the two bodies as they spiraled apart—may have added even more heat, shaping the geological features we see today. Charon’s system of massive fractures and Pluto’s complex, varied surface could both be linked to these early interactions.

This discovery might also explain how other binary systems in the Kuiper Belt formed. Objects like Eris and Dysnomia or Orcus and Vanth could have undergone similar processes. The “kiss and capture” mechanism shows how the unique conditions in the far reaches of the solar system—cold temperatures, low gravity, and icy compositions—can lead to outcomes that differ dramatically from those closer to the Sun.

The researchers are now expanding their simulations to explore other binary systems and study how the collision may have influenced the long-term evolution of Pluto and Charon. They also hope future missions to the Kuiper Belt will provide more data to refine these models.

share Share

Biggest Modern Excavation in Tower of London Unearths the Stories of the Forgotten Inhabitants

As the dig deeper under the Tower of London they are unearthing as much history as stone.

Millions Of Users Are Turning To AI Jesus For Guidance And Experts Warn It Could Be Dangerous

AI chatbots posing as Jesus raise questions about profit, theology, and manipulation.

Can Giant Airbags Make Plane Crashes Survivable? Two Engineers Think So

Two young inventors designed an AI-powered system to cocoon planes before impact.

First Food to Boost Immunity: Why Blueberries Could Be Your Baby’s Best First Bite

Blueberries have the potential to give a sweet head start to your baby’s gut and immunity.

Ice Age People Used 32 Repeating Symbols in Caves Across the World. They May Reveal the First Steps Toward Writing

These simple dots and zigzags from 40,000 years ago may have been the world’s first symbols.

NASA Found Signs That Dwarf Planet Ceres May Have Once Supported Life

In its youth, the dwarf planet Ceres may have brewed a chemical banquet beneath its icy crust.

Nudists Are Furious Over Elon Musk's Plan to Expand SpaceX Launches in Florida -- And They're Fighting Back

A legal nude beach in Florida may become the latest casualty of the space race

A Pig Kidney Transplant Saved This Man's Life — And Now the FDA Is Betting It Could Save Thousands More

A New Hampshire man no longer needs dialysis thanks to a gene-edited pig kidney.

The Earliest Titanium Dental Implants From the 1980s Are Still Working Nearly 40 Years Later

Longest implant study shows titanium roots still going strong decades later.

Common Painkillers Are Also Fueling Antibiotic Resistance

The antibiotic is only one factor creating resistance. Common painkillers seem to supercharge the process.