homehome Home chatchat Notifications


Physicists find a new type of exotic ice that likely exists deep in Earth's mantle or even water-rich alien planets

The scientists made Ice-VIIt in the lab by squeezing water at a pressure more than 50,000 that found at sea level.

Tibi Puiu
March 22, 2022 @ 12:52 am

share Share

Ice is the familiar solid phase of water, but there’s much more to it than meets the eye. The kind of ice we find on the planet’s surface, from your winter backyard to Antarctica’s giant ice sheets and glaciers, is all the same and has a hexagonal crystal structure. But there are 18 other known types of molecular arrangements for ice, even though it’s all water. In fact, one study suggested there should be as many as 300 different forms of ice, most of which still await discovery.

UNLV physicists used a laser-heating technique in a diamond anvil cell (pictured above) as part of their discovery of a new form of ice. Credit: Chris Higgins.

A new one was added to the list this week by researchers at the University of Nevada Las Vegas (UNLV). Like most other types of ice that aren’t naturally found on the planet’s surface, the new type of ice forms at incredibly high pressure, comparable to the kind experienced by matter deep in Earth’s bowels. Scientists believe this new type of ice, known as Ice-VIIt (the regular variety found in your freezer is called Ice I), could be found deep in Earth’s mantle or even on distant watery planets.

In 2017, scientists at the Los Alamos National Laboratory observed water turning into Ice-VII (Ice Seven), a cubic phase, for the first time. It was a huge breakthrough in science and involved using an array of lasers to squeeze water to a pressure exceeding 30,000 times that of Earth’s atmosphere at sea level.

At UNLV’s Nevada Extreme Conditions Lab, physicists used two diamond anvil cells to squeeze water between their tips and recreate pressures as high as those found at the center of the Earth. The ice crystals were subjected to lasers that temporarily melted them before they quickly froze into a powder-like collection of tiny crystals.

After a series of incremental rises in pressure and periodic blasting with the laser beam, the water ice turned into Ice-VII, then into the newly discovered intermediate Ice-VIIt, before settling into Ice-X.

In the process, the physicists not only discovered a new form of ice but also learned that the transition to Ice-X can occur at pressures much lower than they previously thought. The water molecules turned into Ice-VIIt at around 5.1 gigapascals, or 51,000 atmospheric pressures, whereas the transition to Ice-X occurred at around 30.9 gigapascals. More than 300,000 atmospheres are ungodly high, but that’s almost three times less than the one million atmospheres previously thought to be required to make Ice-X, the most extreme form of ice. Given that Ice-X is also thought to be stable to very high temperatures (up to 2500 K so far) then it could be an important part of the interiors of the icy gas giant planets, like our very own Uranus and Neptune.

“This transformation to an ionic state occurs at much, much lower pressures than ever thought before,” UNLV physicist Ashkan Salamat said. “It’s the missing piece, and the most precise measurements ever on water at these conditions.”

Salamat added that the Ice-VIIt phase of ice could exist in abundance in the crust and upper mantle of expected water-rich planets outside of our solar system, meaning they could have conditions habitable for life.

The findings appeared in the journal Physical Review B

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.