homehome Home chatchat Notifications


DNA of "opportunistic bacteria" in ISS water dispenser

Bacteria have made their way to the space station's water, but there's no reason to fear.

Mihai Andrei
February 24, 2020 @ 4:20 pm

share Share

The bacteria strains are remarkably similar to those on Earth, DNA analysis revealed.

Flight Engineer Christina Koch of NASA playfully demonstrates how fluids behave in the weightless environment of microgravity aboard the International Space Station. Image credits: NASA.

Some bacteria species are remarkably tenacious. They can survive in the unlikeliest of conditions, from freezing ice caps to scorching volcanoes. They live underground, above ground, in the water, in the air, and anywhere the mankind has set foot. Wherever we go, we take bacteria with us, whether we like it or not — and the International Space Station is no exception.

Of course, when you’re isolated 400 km above the ground, you can’t afford to allow bacteria to run rampant. Aboard the ISS, bacterial checks are routinely carried out.

So researchers have known for quite a while that the opportunistic pathogens, Burkholderia cepacia and Burkholderia contaminans, have made their way to the potable water dispenser (PWD) of the ISS.

These bacteria are part of a group called Burkholderia cepacia complex — a group of sturdy, but not particularly virulent bacteria. These species love moist environments and plastic surfaces — and the water dispenser. Adapting to microgravity was not a problem to them.

To learn more about these bacteria and how they manage the environment of the ISS, researchers sequenced the genomes of 24 strains collected from 2010 to 2014.

The analysis showed that all the strains were highly similar, and almost certainly descended from the bacteria present in the water dispenser when it was still on Earth — they didn’t come from the astronauts, they were there to begin with.

They don’t seem any more or less virulent than the strains on Earth. It seems that the lack of gravity has not affected them in any major way. Furthermore, they seem vulnerable to the same antibiotics as their cousins on Earth, further emphasizing their lack of change.

“Within each species, the 19 B. cepacia and 5 B. contaminans recovered from the ISS were highly similar on a whole genome scale, suggesting each population may have stemmed from two distinct founding strains,” the study reads.

That’s good news. It means that, at the very least, microgravity isn’t breeding a generation of superbugs (at least, not with these bacteria). The astronauts aren’t in any major risk from this.

Nevertheless, the water system is set to be replaced with a new system once it fails and will undergo a different decontamination method after installation.

Getting rid of all the bacteria has proven to be extremely challenging. It’s still not clear what would be the best way to go about this for the ISS. Several disinfectants have been suggested. This study supports the idea that silver might be useful, as could iodine.

“Experimental designs testing the effects of the iodine disinfection process, and possibly how silver treatments may compare, would be of value moving forward,” the study concludes.

The study has been published in the open-access journal PLoS ONE

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.