homehome Home chatchat Notifications


Exploding supernova observed in four different images

According to a new report, a team of astronomers has observed a supernova explode - split into four different images. It's a "needle in the hay stack" scenario which astronomers were hoping to find for a long time... and now they finally did.

Dragos Mitrica
March 6, 2015 @ 4:19 am

share Share

According to a new report, a team of astronomers has observed a supernova explode – split into four different images. It’s a “needle in the hay stack” scenario which astronomers were hoping to find for a long time… and now they finally did.

The powerful gravity of a galaxy embedded in a massive cluster of galaxies in this Hubble Space Telescope image is producing multiple images of a single distant supernova far behind it. Both the galaxy and the galaxy cluster are acting like a giant cosmic lens, bending and magnifying light from the supernova behind them, an effect called gravitational lensing. Image via NASA.

“Astronomers have been looking to find one ever since,” said Tommaso Treu of the University of California Los Angeles, USA, the GLASS project’s principal investigator. “And now the long wait is over!”

Astronomers using the NASA/ESA Hubble Space Telescope have, for the first time, discovered a supernova that confirmed one of Einstein’s theories. The initial explosion actually took place more than 9 billion years ago – way beyond Hubble’s range of visibility; however, astronomers managed to observe it using a technique called gravitational lensing – using the light refracted from another galaxy, just like a magnifying glass.

“The supernova appears about 20 times brighter than its natural brightness,” explains the paper’s co-author Jens Hjorth from the Dark Cosmology Centre, Denmark. “This is due to the combined effects of two overlapping lenses. The massive galaxy cluster focuses the supernova light along at least three separate paths, and then when one of those light paths happens to be precisely aligned with a single elliptical galaxy within the cluster, a secondary lensing effect occurs.” The dark matter associated with the elliptical galaxy bends and refocuses the light into four more paths, generating the rare Einstein cross pattern the team observed.

The four images are arranged in a so-called Einstein cross – because Einstein is the one who predicted that such a phenomenon will generate multiple images. Einstein’s cross settings are very rare, and this is the first time it has been done with a supernova. With this approach, the galaxy used as a lens bends light and produces multiple images of the supernova

“It’s perfectly set up, you couldn’t have designed a better experiment,” said Brad Tucker from the Australian National University (ANU).

As a matter of fact, everybody was surprised to make this discovery. Lead author, Dr. Patrick Kelly of the University of California, Berkeley commented:

“I was sort of astounded,” responding to the supernova images from a recording made by the Hubble Telescope last November, adding: “I was not expecting anything like that at all.”

The unique observation will not only help astronomers test Einstein’s theories, but also provide new insight into the nature and distribution of dark matter. Dark matter makes up most of the known Universe, but we pretty much don’t know anything about it – we can just confirm its gravitational effect.

The supernova has been nicknamed Refsdal in honor of Norwegian astronomer Sjur Refsdal, who, in 1964, first proposed using time-delayed images from a lensed supernova to study the expansion of the Universe. It’s estimated that in the next few years we might be able to observe even more images from this supernova.

“The four supernova images captured by Hubble appeared within a few days or weeks of each other and we found them after they had appeared,” explains Steve Rodney of Johns Hopkins University, USA, leader of the Frontier Fields Supernova team. “But we think the supernova may have appeared in a single image some 20 years ago elsewhere in the cluster field, and, even more excitingly, it is expected to reappear once more in the next one to five years — and at that time we hope to catch it in action.”

Source: NASA.

share Share

New research shows how Trump uses "strategic victimhood" to justify his politics

How victimhood rhetoric helped Donald Trump justify a sweeping global trade war

Biggest Modern Excavation in Tower of London Unearths the Stories of the Forgotten Inhabitants

As the dig deeper under the Tower of London they are unearthing as much history as stone.

Millions Of Users Are Turning To AI Jesus For Guidance And Experts Warn It Could Be Dangerous

AI chatbots posing as Jesus raise questions about profit, theology, and manipulation.

Can Giant Airbags Make Plane Crashes Survivable? Two Engineers Think So

Two young inventors designed an AI-powered system to cocoon planes before impact.

First Food to Boost Immunity: Why Blueberries Could Be Your Baby’s Best First Bite

Blueberries have the potential to give a sweet head start to your baby’s gut and immunity.

Ice Age People Used 32 Repeating Symbols in Caves Across the World. They May Reveal the First Steps Toward Writing

These simple dots and zigzags from 40,000 years ago may have been the world’s first symbols.

NASA Found Signs That Dwarf Planet Ceres May Have Once Supported Life

In its youth, the dwarf planet Ceres may have brewed a chemical banquet beneath its icy crust.

Nudists Are Furious Over Elon Musk's Plan to Expand SpaceX Launches in Florida -- And They're Fighting Back

A legal nude beach in Florida may become the latest casualty of the space race

A Pig Kidney Transplant Saved This Man's Life — And Now the FDA Is Betting It Could Save Thousands More

A New Hampshire man no longer needs dialysis thanks to a gene-edited pig kidney.

The Earliest Titanium Dental Implants From the 1980s Are Still Working Nearly 40 Years Later

Longest implant study shows titanium roots still going strong decades later.