homehome Home chatchat Notifications


Nova seen Expanding right from the Beginning for the First Time

Here’s something you don’t see everyday – for the first time, astronomers witnessed how a nova is formed right from the onset, capturing and detailing its expansion. The white dwarf turned nova is located some 14,800 light-years away and its study is set to reveal many things about how novas form. The star is dead, long […]

Tibi Puiu
October 28, 2014 @ 3:58 pm

share Share

Here’s something you don’t see everyday – for the first time, astronomers witnessed how a nova is formed right from the onset, capturing and detailing its expansion. The white dwarf turned nova is located some 14,800 light-years away and its study is set to reveal many things about how novas form.

The star is dead, long live the nova!

Artist impression of a dwarf star 'feeding' on donor star. Credit: David A. Hardy / astroart.org

Artist impression of a dwarf star ‘feeding’ on donor star. Credit: David A. Hardy / astroart.org

Stars shine due to the nuclear fusion reactions in their cores, which process hydrogen into helium, releasing energy in the process. When the hydrogen is used up, sun-like stars slough off their outer envelopes, and become very small, very hot “white dwarfs.” These white dwarfs are basically the core that remains of a star after it had used up all its available hydrogen. Now, stars often come in pairs – these are called binary systems. More often than not, when a white dwarf is gravitational tugged with a larger neighbor, say a red giant (a star that’s at the end of its life, but at a stage before shrinking into a white dwarf), the dwarf will act as a vampire and suck hydrogen from its compannion. The white dwarf thus starts accumulating a rising “ocean” of hydrogen on its surface. Once the hydrogen ocean become deep enough, the rising pressure will hit a critical level that will cause the dwarf’s surface to expand in an explosion similar to a thermonuclear bomb. The white dwarf is now reborn, hence the name – “nova” comes from the latin “new star”.

[RELATED] The most powerful stars are actually vampire binary systems

Novas should not be confused with their more spectacular brethren, supernovas. Supernovas are among the most powerful and spectacular events in the universe, and aren’t very common. They represent a dramatic culmination of a star’s life, after all of its nuclear fuel is spent and the outward pressure is no longer able to counteract the gravity. This causes the star to suddenly collapse so fast that it makes enormous shock waves that blow the outer part of the star into space at 20,000 kilometers per second (50 million miles per hour)! Needless to say, supernovas can only happen once, but a dying star can sometimes explode in novas more than once. It’s a key difference.

A stroke of luck

Nova Delphini dominates in this color view through a 17″ telescope. Your eyes won’t quite deliver that kind of view, unfortunately. (Credit: Virtual Telescope Project)

Nova Delphini dominates in this color view through a 17″ telescope. Your eyes won’t quite deliver that kind of view, unfortunately. (Credit: Virtual Telescope Project)

No one was able to witness a nova from its very onset, until Aug. 14, 2013, when Japanese amateur astronomer Koichi Itagaki detected an object that was dubbed Nova Delphinus 2013. Itagaki was the man of the moment – he was looking at the right patch of the sky at the very right moment and was able to see and capture the nova that had just flashed into existence hours before. Shortly after Itagaki’s discovery, scientists at the Mt. Wilson Observatory in the Angeles National Forest were notified and immediately turned their scope on the nova which they studied for the following weeks. Using the Center for High Angular Resolution Astronomy array, which consists of six 1-meter telescopes, immense volumes of data were gathered that allowed the astronomers to reconstruct the first three nights following the nova’s birth. In total, the nova expansion was followed for 27 nights over two months.

Here’s how it progressed:

  • In its first day the nova was the size of Earth’s orbit;
  • Two days later it was the size of Mars’ orbit;
  • Only two week later it was the size of Jupiter’s orbit
  • Day 43 and Nova Delphinus was as large as Neptune’s orbit – the most distant planet in our solar system (sorry, Pluto!) – or a x20 increase from its initial size.
delphinus_nova

Time evolution of the two-component model of Nova Delphini 2013; the time since the explosion (in days) is indicated in each panel; intensity refers to the flux per unit area. Image credit: G. H. Schaefer et al.

Peculiar as it may seem, the Nova’s surface isn’t spherical, being 13% longer than wide. There’s a perfectly reasonable explanation: it means the nova didn’t expand uniformly and reactions differ across the entire surface. On previously studied, older novas this asymmetry was pinned to dust and debris as they expand over long stretches of time. Since Nova Delphinus is asymmetric from birth, something else is at play.

“The fact that we see it two days after shows that the explosion itself is not symmetric – which gives you clues about how material is being ejected from the surface of the white dwarf,”said lead author Gail Schaefer, an astronomer at Georgia State University.

Schematic view of Nova Delphini: Tendrils of gas from a sunlike star (right) are pulled toward a compact white dwarf star (invisible within the hot disk at left). Hydrogen piles up on the dwarf’s surface until it explodes like an H-bomb. (Credit: NASA/CXC/M.Weiss)

Schematic view of Nova Delphini: Tendrils of gas from a sunlike star (right) are pulled toward a compact white dwarf star (invisible within the hot disk at left). Hydrogen piles up on the dwarf’s surface until it explodes like an H-bomb. (Credit: NASA/CXC/M.Weiss)

Nova Delphinus might once again erupt in a spectacle of light, but it’s highly unlikely this will happen during our lifetimes. The nova was described in a paper published Nature.

Dr Theo ten Brummelaar of Georgia State University stated that, “The recent information enable us to study in detail exactly how the fireball evolves as the gas expands and cools. It seems like the ride is a lot more complex and jarring for the gas than the simple models used previously would have predicted.”

Scientific reference: G. H. Schaefer et al. The expanding fireball of Nova Delphini 2013. Nature, published online October 26, 2014; doi: 10.1038/nature13834

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.