homehome Home chatchat Notifications


How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

Jordan Strickler
December 20, 2024 @ 9:28 pm

share Share

The Moon may be Earth’s closest neighbor, but it still holds many secrets beneath its dusty surface. While humans first set foot there over 50 years ago, our understanding of the Moon’s internal structure and thermal history remains incomplete. Now, with NASA’s Artemis program aiming to establish a sustainable human presence, a groundbreaking new instrument could revolutionize how we plan to live and work on the Moon.

This is where the new tool comes in.

lunar research instrument
LISTER is equipped with a drilling system and thermal probe designed to dig into the lunar surface. (Credit:  Firefly Aerospace)

Heat on the moon

The Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER)—scheduled for delivery to the lunar surface in 2025—will measure heat flow from within the Moon, helping scientists understand how our 4.5-billion-year-old satellite formed, how it cooled, and how its interior evolved.

Modern research, based on Apollo samples and data from missions like NASA’s GRAIL (Gravity Recovery and Interior Laboratory), shows that the Moon is not just a cold, inert rock. It has a complex interior, including a solid inner core surrounded by a molten outer core. By analyzing how heat travels through the Moon’s surface material (regolith), scientists can infer deeper thermal processes dating back to the Moon’s molten beginnings.

LISTER is designed to drill into the lunar soil, called regolith up to roughly three meters, collecting thermal data at multiple intervals. The instrument will measure two different aspects of heat flow: thermal gradient (how temperature changes with depth) and thermal conductivity (the subsurface material’s ability to let heat pass through it).

This is no simple task, however. The Moon’s regolith is a fine, dusty layer formed by countless impacts over millennia. Dust grains are jagged and abrasive, making drilling and subsurface measurements challenging. LISTER’s pneumatic excavation system tackles this problem by using controlled bursts of gas to clear material and steadily advance the drill.

Taking the moon’s temperature

Every half a meter, a delicate needle-like sensor will be inserted into the undisturbed soil to measure temperature. Inside this sensor, a platinum resistance thermometer records the soil’s natural temperature for 30 to 60 minutes. Repeating this process multiple times will produce a detailed heat-flow profile of the lunar soil.

“By making similar measurements at multiple locations on the lunar surface, we can reconstruct the thermal evolution of the Moon,” said Seiichi Nagihara, principal investigator for the mission and a geophysics professor at Texas Tech. “That will permit scientists to retrace the geological processes that shaped the Moon from its start as a ball of molten rock, which gradually cooled off by releasing its internal heat into space.”

These insights aren’t just academic—they’re vital for future exploration. The Artemis program aims to return humans to the Moon, establish bases, and prepare for missions to Mars and beyond. Knowing how heat behaves beneath the Moon’s surface could influence plans for underground habitats, resource extraction, and long-term scientific installations. If LISTER’s techniques succeed, they might also pave the way for similar missions on Mars and other planets.

share Share

America’s Favorite Christmas Cookies in 2024: A State-by-State Map

Christmas cookie preferences are anything but predictable.

The 2,500-Year-Old Gut Remedy That Science Just Rediscovered

A forgotten ancient clay called Lemnian Earth, combined with a fungus, shows powerful antibacterial effects and promotes gut health in mice.

Should we treat Mars as a space archaeology museum? This researcher believes so

Mars isn’t just a cold, barren rock. Anthropologists argue that the tracks of rovers and broken probes are archaeological treasures.

Proba-3: The Budget Mission That Creates Solar Eclipses on Demand

Now scientists won't have to travel from one place to another to observe solar eclipses. They can create their own eclipses lasting for hours.

Hidden for Centuries, the World’s Largest Coral Colony Was Mistaken for a Shipwreck

This massive coral oasis offers a rare glimmer of hope.

This Supermassive Black Hole Shot Out a Jet of Energy Unlike Anything We've Seen Before

A gamma-ray flare from a black hole 6.5 billion times the Sun’s mass leaves scientists stunned.

Scientists Say Antimatter Rockets Could Get Us to the Stars Within a Lifetime — Here’s the Catch

The most explosive fuel in the universe could power humanity’s first starship.

Astronauts will be making sake on the ISS — and a cosmic bottle will cost $650,000

Astronauts aboard the ISS are brewing more than just discoveries — they’re testing how sake ferments in space.

Superflares on Sun-Like Stars Are Much More Common Than We Thought

Sun-like stars release massive quantities of radiation into space more often than previously believed.

Astronomers Just Found Stars That Mimic Pulsars -- And This May Explain Mysterious Radio Pulses in Space

A white dwarf/M dwarf binary could be the secret.