homehome Home chatchat Notifications


NASA scientists create basic building blocks of life in a 'primordial ocean'

A breakthrough that will narrow down the search for alien life.

Tibi Puiu
February 26, 2019 @ 5:10 pm

share Share

Example of hydrothermal vent. Credit: Wikimedia Commons.

Example of a hydrothermal vent. Credit: Wikimedia Commons.

The origin of life is one of the most important questions in science. For NASA, answering this question is especially important because it enables scientists to narrow down their search for alien life, in the solar system or beyond. In a new study, a research team at NASA’s Jet Propulsion Laboratory in Pasadena, California, reported how it managed to create amino acids — the basic building blocks of life that, like pieces of LEGO, assemble into proteins — in an environment that simulates what the ocean floor was like four billion years ago.

Life in a jar

Researchers made miniature seafloors by filling beakers with a solution that mimics Earth’s primordial ocean, including a hydrothermal vent — cracks in the seafloor where hot fluid escapes from the crust. These porous geological structures are produced by chemical reactions between solid rock and water, as alkaline fluids from the Earth’s crust flow up the vent towards the more acidic ocean water. This interaction leads to natural proton concentration differences remarkably similar to those powering all living cells.

Like an underwater chimney, hydrothermal vents produce a warm environment that is constantly in flux, which is why biologists have identified them as a probable hotspot for the formation of life.

“Understanding how far you can go with just organics and minerals before you have an actual cell is really important for understanding what types of environments life could emerge from,” Laurie Barge, and astrobiologist and the first author on the new study, said in a statement. “Also, investigating how things like the atmosphere, the ocean and the minerals in the vents all impact this can help you understand how likely this is to have occurred on another planet.”

Barge and colleagues combined water and minerals, along with pyruvate and ammonia, which are precursor molecules to amino acids. The solution was heated to around 158ºF (70ºC), the average temperature of a hydrothermal vent, and researchers adjusted the pH in order to mimic an alkaline environment. Oxygen was carefully removed until it reached a low concentration, similar to that of early Earth when cyanobacteria had yet to transform the planet’s suffocating atmosphere. Finally, the researchers also added iron hydroxide, also known as “green rust”, which was abundant billion of years ago.

A time-lapse video of a miniature hydrothermal chimney forming in the lab. Credit: NASA/JPL-Caltech.

A time-lapse video of a miniature hydrothermal chimney forming in the lab. Credit: NASA/JPL-Caltech.

The researchers found that the green rust reacted with the oxygen from the solution, producing the amino acid alanine and the alpha hydroxy acid lactate. The latter is important because alpha hydroxy acids are the byproducts of amino acid reactions, and are therefore considered to be essential components of the complex organic molecules that might form life.

“We’ve shown that in geological conditions similar to early Earth, and maybe to other planets, we can form amino acids and alpha hydroxy acids from a simple reaction under mild conditions that would have existed on the seafloor,” said Barge.

Jupiter’s moon, Europa, is believed to hide a deep ocean of salty liquid water beneath its icy shell. Now, a new Nasa study has revealed that this ocean may have an Earth-like chemical balance that could sustain life. Credit: NASA.

Previously, researchers had investigated whether the right ingredients for life could be found in hydrothermal vents or if they could supply enough power to drive important chemical reactions. However, this was the first time that scientists produced the precursors to life in a hydrothermal-vent-like environment.

Such environments are believed to exist elsewhere in the solar system, beneath the thick ice that covers Jupiter’s moon Europa and Saturn’s moon Enceladus. In the future, NASA would like to send robotic exploration missions to these worlds that might drill through the ice and gather evidence of amino acids and other biological signatures.

“We don’t have concrete evidence of life elsewhere yet,” said Barge. “But understanding the conditions that are required for life’s origin can help narrow down the places that we think  could exist.”

The findings appeared in the journal Proceedings of the National Academy of Sciences.

share Share

What Happens When You Throw a Paper Plane From Space? These Physicists Found Out

A simulated A4 paper plane takes a death dive from the ISS for science.

A New Vaccine Could Stop One of the Deadliest Forms of Breast Cancer Before It Starts

A phase 1 trial hints at a new era in cancer prevention

After 700 Years Underwater Divers Recovered 80-Ton Blocks from the Long-Lost Lighthouse of Alexandria

Divered recover 22 colossal blocks from one of the ancient world's greatest marvels.

Scientists Discover 9,000 Miles of Ancient Riverbeds on Mars. The Red Planet May Have Been Wet for Millions of Years

A new look at Mars makes you wonder just how wet it really was.

This Is Why Human Faces Look So Different From Neanderthals

Your face stops growing in a way that neanderthals' never did.

Ozempic Is Changing More Than Waistlines as Scientists Wise Up to Concerning Side Effects

But GLP-1 drugs also offer many benefits beyond weight loss.

Researchers stop Parkinson's symptoms in mice using a copper supplement. Could humans be next?

Could we stop Parkinson's by feeding neurons copper?

There's a massive, ancient river system under Antarctica's ice sheet

This has big implications for our climate models.

I Don’t Know Who Needs to Hear This, But It's Okay to Drink Coffee in the Summer

Finally, some good news.

New Blood Test Reveals How Fast Your Organs Are Aging. Your Brain’s Biological Age May Hold the Key to How Long You Live

People with "older" brains had a much higher risk of dying compared to "younger" brains.