homehome Home chatchat Notifications


Most potentially habitable planets don't have day-night cycles. What does this mean for the evolution of alien life?

Most planets that have the potential to host life have one side always facing their sun.

Maureen Cohen
September 10, 2024 @ 4:11 pm

share Share

Artist’s impression of the planet GJ 3512b orbiting its red dwarf host star. (Courtesy: Guillem Anglada-Escude – IEEC/Science-wave/CC BY 4.0)

Do aliens sleep? You may take sleep for granted, but research suggests many planets that could evolve life don’t have a day and night cycle. It’s hard to imagine, but there are organisms living in Earth’s lightless habitats, deep underground or at the bottom of the sea, that give us an idea of what alien life without a circadian rhythm may be like.

There are billions of potentially habitable planets in our galaxy. How do we arrive at this number? The Milky Way has between 100 billion and 400 billion stars.

Seventy percent of these are tiny, cool red dwarfs, also known as M-dwarfs. A detailed exoplanet survey published in 2013 estimated that 41% of M-dwarf stars have a planet orbiting in their “Goldilocks” zone, the distance at which the planet has the right temperature to support liquid water.

These planets only have the potential to host liquid water, though. We don’t yet know if any of them actually do have water, much less life. Still, that comes to 28.7 billion planets in the Goldilocks zones of M-dwarfs alone. This is not even considering other types of stars like our own yellow Sun.

Rocky planets orbiting in an M-dwarf’s habitable zone are called M-Earths. M-Earths differ from our Earth in fundamental ways. For one thing, because M-dwarf stars are much cooler than the Sun, they are close-in, which makes the gravitational pull of the star on the planet immensely strong.

The star’s gravity pulls harder on the near side of the planet than the far side, creating friction that resists and slows the planet’s spin over aeons until spin and orbit are synchronised. This means most M-Earths are probably tidally locked, which is when one hemisphere always faces the sun while the other always faces away.

A tidally locked planet’s year is the same length as its day. The Moon is tidally locked to the Earth, which is why we always see only one face of the Moon and never its far side.

A tidally locked planet may seem exotic, but most potentially habitable planets are probably like this. Our closest planetary neighbour, Proxima Centauri b (located in the Alpha Centauri system four light-years away), is probably a tidally locked M-Earth.

Unlike our Earth, then, M-Earths have no days, no nights and no seasons. But life on Earth, from bacteria to humans, has circadian rhythms tuned to the day-night cycle.

Sleep is only the most obvious of these. The circadian cycle affects biochemistry, body temperature, cell regeneration, behaviour and much more. For example, people who receive vaccinations in the morning develop more antibodies than those who receive them in the afternoon because the immune system’s responsiveness varies throughout the day.

We don’t know for sure how important periods of inactivity and regeneration are to life. Maybe beings that evolved without cyclical time can just keep on chugging, never needing to rest.

To inform our speculation, we can look at organisms on Earth that thrive far from daylight, such as cave-dwellers, deep-sea life and microorganisms in dark environments like the Earth’s crust and the human body.

Many of these life-forms do have biorhythms, synchronised to stimuli other than light. Naked mole rats spend their entire lives underground, never seeing the sun, but they have circadian clocks attuned to daily and seasonal cycles of temperature and rainfall. Deep-sea mussels and hot vent shrimp synchronise with the ocean tides.

Bacteria living in the human gut synchronise with melatonin fluctuations in their host. Melatonin is a hormone your body produces in response to darkness.

Temperature variations caused by thermal vents, humidity fluctuations, and changes in environmental chemistry or currents can all trigger bio-oscillations in organisms. This hints that biorhythms have intrinsic benefits.

Recent research shows M-Earths could have cycles that replace days and seasons. To study questions like these, scientists have adapted climate models to simulate what the environment on an M-Earth would look like, including our neighbour Proxima Centauri b.

In these simulations, the contrast between dayside and nightside seems to generate rapid jets of wind and atmospheric waves like those that cause Earth’s jet stream to bend and meander. If the planet has water, the dayside probably forms thick clouds full of lightning.

Interactions between winds, atmospheric waves and clouds may shift the climate between different states, causing regular cycles in temperature, humidity and rainfall. The lengths of these cycles will vary by planet from tens to hundreds of Earth days, but they won’t be related to its rotation period. While the star remains fixed in the sky of these planets, the environment will be changing.

Perhaps life on M-Earths would evolve biorhythms synchronised to these cycles. If a circadian clock organises internal biochemical oscillations, it may have to.

Or perhaps evolution would find a weirder solution. We could imagine species that live on the planet’s dayside and migrate to the nightside to rest and regenerate. A circadian clock in space instead of in time.

This thought should remind us that, if life exists out there, it will upend assumptions we didn’t know we had. The only certainty is that it will surprise us.

Maureen Cohen, Postdoctoral Research Associate in Venus Global Climate Modelling, The Open University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

Should we treat Mars as a space archaeology museum? This researcher believes so

Mars isn’t just a cold, barren rock. Anthropologists argue that the tracks of rovers and broken probes are archaeological treasures.

Proba-3: The Budget Mission That Creates Solar Eclipses on Demand

Now scientists won't have to travel from one place to another to observe solar eclipses. They can create their own eclipses lasting for hours.

This Supermassive Black Hole Shot Out a Jet of Energy Unlike Anything We've Seen Before

A gamma-ray flare from a black hole 6.5 billion times the Sun’s mass leaves scientists stunned.

Astronauts will be making sake on the ISS — and a cosmic bottle will cost $650,000

Astronauts aboard the ISS are brewing more than just discoveries — they’re testing how sake ferments in space.

Superflares on Sun-Like Stars Are Much More Common Than We Thought

Sun-like stars release massive quantities of radiation into space more often than previously believed.

Astronomers Just Found Stars That Mimic Pulsars -- And This May Explain Mysterious Radio Pulses in Space

A white dwarf/M dwarf binary could be the secret.

These Satellites Are About to Create Artificial Solar Eclipses — And Unlock the Sun's Secrets

Two spacecraft will create artificial eclipses to study the Sun’s corona.

Mars Dust Storms Can Engulf Entire Planet, Shutting Down Rovers and Endangering Astronauts — Now We Know Why

Warm days may ignite the Red Planet’s huge dust storms.

The Smallest Asteroids Ever Detected Could Be a Game-Changer for Planetary Defense

A new technique allowed scientists to spot the smallest asteroids ever detected in the main belt.