homehome Home chatchat Notifications


Shrinking moon is quaking, revealing it may be tectonically active

The moon may be tectonically active, according to groundbreaking new research.

Tibi Puiu
May 14, 2019 @ 1:06 pm

share Share

Like a grape that wrinkles to produce a raisin, the moon is shrinking day by day as it interior cools. In the process, the lunar crust breaks, producing thrust faults — a type of fault where ground from one section of the crust is pushed up over an adjacent section. Now, scientists have used images NASA’s Lunar Reconnaissance Orbiter (LRO) and seismic data from the Apollo missions, finding that the moon’s shrinkage is also producing moonquakes around these thrust faults.

This prominent thrust fault is one of thousands discovered on the moon by NASA's Lunar Reconnaissance Orbiter (LRO). New research suggests that these faults may still be active today, producing moonquakes. Credit: NASA/GSFC/Arizona State University/Smithsonian.

This prominent thrust fault is one of the thousands discovered on the moon by NASA’s Lunar Reconnaissance Orbiter (LRO). New research suggests that these faults may still be active today, producing moonquakes. Credit: NASA/GSFC/Arizona State University/Smithsonian.

A shocking study

Since 2009, the LRO mission identified more than 3,500 thrust faults on the moon. Some of these images showed evidence of landslides and boulder falls at the slopes of thrust faults, also known as scarps. These features appeared relatively bright in the images, suggesting that they were produced recently. Normally, weathering darkens material on the moon’s surface in time. What’s more, the constant rain of micrometeoroids should have erased these tracks, suggesting that they are relatively fresh.

In the 1960s and 1970s, astronauts placed five seismometers on the moon’s surface. The Apollo 11 seismic instrument listened for rumbles in the moon’s crust for only three weeks, but subsequent missions recorded 28 moonquakes. These were very shallow quakes ranging in magnitude from 2 to 5. To Nicholas Schmerr, an assistant professor of geology at the University of Maryland, this data looked very similar to that of earthquakes produced by tectonic faults.

Schmerr and colleagues superimposed the epicenters for moonquakes recorded by Apollo-era seismometers with LRO imagery of thrust faults. They found that at least eight of the moonquakes matched almost perfectly with scarps, suggesting that they were produced by genuine tectonic activity, rather than processes deep within the moon’s interior or from asteroid impacts.

“We found that a number of the quakes recorded in the Apollo data happened very close to the faults seen in the LRO imagery,” Schmerr said in a statement. “It’s quite likely that the faults are still active today. You don’t often get to see active tectonics anywhere but Earth, so it’s very exciting to think these faults may still be producing moonquakes.”

The authors used their model to produce “shake maps” based on predictions of where the strongest shaking should occur, given the size of thrust faults. Six of moonquakes occurred while the moon was at or near its apogee, which is the point where the moon is farthest away from Earth. This suggests that tidal forces from Earth’s gravity stress the moon’s crust, making fault generation more likely.

NASA's Lunar Reconnaissance Orbiter captured this view of the Taurus-Littrow valley. You can see a lunar fault cutting across it. Credit: NASA.

NASA’s Lunar Reconnaissance Orbiter captured this view of the Taurus-Littrow valley. You can see a lunar fault cutting across it. Credit: NASA.

“We think it’s very likely that these eight quakes were produced by faults slipping as stress built up when the lunar crust was compressed by global contraction and tidal forces, indicating that the Apollo seismometers recorded the shrinking moon and the moon is still tectonically active,” said Thomas Watters, lead author of the research paper and senior scientist in the Center for Earth and Planetary Studies at the Smithsonian Institution in Washington.

These stunning findings could have a huge impact on how scientists view the moon from now on. They suggest that the moon may still be tectonically active and raise questions regarding its evolution. According to the leading lunar formation theory, the moon formed roughly 4.5 billion years ago after a planetary-sized body collided with early Earth. Many believe that any internal heat the moon might have had must have escaped a long time ago due to its small size relative to Earth. These new findings, however, suggest that there might still be some “steam” left to blow. Somehow, the moon managed to remain tectonically active after 4.51 billion years — and we don’t know how yet.

And considering Jeff Bezos’ recent grand plans for establishing a human presence in the solar system, including the moon, these new findings published in Nature Geoscience suggest that we ought to prepare for quakes, besides the numerous other perils.

“For me, these findings emphasize that we need to go back to the moon,” Schmerr said. “We learned a lot from the Apollo missions, but they really only scratched the surface. With a larger network of modern seismometers, we could make huge strides in our understanding of the moon’s geology. This provides some very promising low-hanging fruit for science on a future mission to the moon.”

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.