homehome Home chatchat Notifications


Researchers discover a planet so big it might not be a planet after all

Too big for a planet, too small for a star.

Mihai Andrei
November 8, 2017 @ 7:32 pm

share Share

Astronomers have spotted a planet 13 times larger than Jupiter, raising questions as to whether it is a planet, or rather something else.

The newly discovered object lies at the border between gas giants and brown dwarfs. Image via Wiki Commons.

NASA’s Spitzer telescope is an infrared space telescope launched in 2003. Initially meant to survive for only 2.5 years, the telescope is still running, allowing astronomers to gather useful data, especially through a technique called microlensing. In gravitational lensing, astronomers study the bending of the light caused by massive objects or clusters. Stars from the Milky Way usually serve as the lensing object. Microlensing is a type of gravitational lensing in which no distortion in shape can be seen, but the amount of light received from a background object still changes in time. The effect is small, such that even a galaxy with a mass more than 100 billion times that of the Sun will produce barely noticeable effects. However, these effects are strong enough to be noticed.

A light source passes behind a gravitational lens (point mass placed in the center of the image). The aqua circle is a source as it would be seen if there was no lens; white spots are the multiple images of the source.

The good thing about microlensing is that it does not rely on the light from the host stars; thus, it can detect planets, even when the host stars cannot be detected. This was the case with an object called OGLE-2016-BLG-1190.

The object might not sound very exciting, but it is. Astronomers estimate it to be at about 13.4 Jupiter masses. This is almost too big to be a planet; it puts it right at the limit between gas giants and a brown dwarf. In other words, we don’t know if it is a humongous planet or a failed star.

“The planet’s mass places it right at the deuterium burning limit, i.e., the conventional boundary between “planets” and “brown dwarfs”. Its existence raises the question of whether such objects are really “planets” (formed within the disks of their hosts) or “failed stars” (low mass objects formed by gas fragmentation),” the paper reads.

The deuterium burning researchers refer to is a nuclear fusion reaction that occurs in stars and some substellar objects, in which a deuterium nucleus and a proton combine to form a helium nucleus.

Deuterium fusion is what makes a star a star. Brown stars occupy the mass range between the heaviest gas giant planets and the lightest stars. They are generally regarded as sub-stellar objects not massive enough to sustain nuclear fusion of ordinary hydrogen, but still massive enough to support the fusion of deuterium.

OGLE-2016-BLG-1190Lb orbits its parent star approximately every three years, two times further away than the Earth is from the Sun. It’s the first planet discovered through microlensing from Spitzer.

Journal Reference: Y.-H. Ryu et al. OGLE-2016-BLG-1190Lb: First Spitzer Bulge Planet Lies Near the Planet/Brown-Dwarf Boundary. arXiv:1710.09974

share Share

Your gut has a secret weapon against 'forever chemicals': microbes

Our bodies have some surprising allies sometimes.

High IQ People Are Strikingly Better at Forecasting the Future

New study shows intelligence shapes our ability to forecast life events accurately.

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Scientists Ranked the Most Hydrating Drinks and Water Didn't Win

Milk is more hydrating than water. Here's why.

Methane Leaks from Fossil Fuels Hit Record Highs. And We're Still Looking the Other Way

Powerful leaks, patchy action, and untapped fixes keep methane near record highs in 2024.

Astronomers Found a Star That Exploded Twice Before Dying

A rare double explosion in space may rewrite supernova science.

This Enzyme-Infused Concrete Could Turn Buildings into CO2 Sponges

A new study offers a greener path for concrete, the world’s dirtiest building material.

AI Helped Decode a 3,000-Year-Old Babylonian Hymn That Describes a City More Welcoming Than You’d Expect

Rediscovered text reveals daily life and ideals of ancient Babylon.

Peeling Tape Creates Microlightning Strong Enough To Power Chemistry

Microlightning from everyday tape may unlock cleaner ways to drive chemical reactions.

Menstrual Cups Passed a Brutal Space Test. They Could Finally Fix a Major Problem for Many Astronauts

Reusable menstrual cups pass first test in space-like flight conditions.