homehome Home chatchat Notifications


Martian meteorites reveal secrets of Red Planet's geological past

Who knew a Martian meteorite could be so pretty?

Jordan Strickler
June 5, 2024 @ 3:02 pm

share Share

Picture of mars
Credit: StarWalk.

A new study could significantly advance astronomers’ understanding of the Red Planets’ geological past and the processes that shaped its surface. Researchers involved in the multi-university study discovered evidence of a heterogeneous mantle and crustal structure that formed during Mars’ early days. The findings suggest that Mars went through a period of intense volcanic activity that contributed to the planet’s unique geology.

Martian meteorites, rocks ejected from the surface of Mars that have landed on Earth, serve as vital records of Mars’ geological history. Among these meteorites, two types, nakhlites and chassignites, are particularly important. Nakhlites are basaltic rocks rich in the mineral augite, while chassignites are primarily comprised of olivine. These meteorites are believed to have formed from the same magmatic system on Mars, providing a unique window into the planet’s past.

“Martian meteorites are the only physical materials we have available from Mars,” lead author and Scripps Institution of Oceanography geologist James Day said. “They enable us to make precise and accurate measurements and then quantify processes that occurred within Mars and close to the Martian surface. They provide direct information on Mars’ composition that can ground truth mission science, like the ongoing Perseverance rover operations taking place there.”

The researchers analyzed highly siderophile elements (chemical elements that preferentially associate with metallic iron) and osmium isotopes in these meteorites to understand their origins and the processes they underwent. Their findings suggest that nakhlites and chassignites formed from a common volcanic system, which experienced various geological processes over billions of years.

Meteorites like this Nakhla meteorite could provide insights into how planets like Mars and Earth geologically evolved. Credit: Scripps Institution of Oceanography at UC San Diego.

The study confirms that nakhlites and chassignites originated from the same magmatic source, meaning they crystallized from the same molten rock. This indicates a layered structure in Mars’ interior, comprising an ancient, enriched basaltic crust and a depleted mantle.

Some nakhlites show signs of incorporating older, altered basaltic crust during their formation. This crust differs from other ancient Martian crustal materials represented by meteorites like Allan Hills 84001 or Northwest Africa 7034/7533. The altered crust contained elements incorporated into the nakhlites as they crystallized.

The Chassigny meteorite in cross-polarized light. This meteorite is dominated by the mineral olivine. Grains are roughly 0.5 millimeters across. Credit: Scripps Institution of Oceanography at UC San Diego.

“With the existing collection of Martian meteorites, all of which are volcanic in origin, we are able to better understand the internal structure of Mars,” Day said.

The data suggest a complex, layered structure within Mars. It includes an ancient basaltic crust formed from magma ocean cumulates rich in trace elements, a mantle that has undergone chemical alteration, and a deep mantle layer that lost some original elements through volcanic processes.

These findings have profound implications for understanding Mars’ geological evolution.

“What’s remarkable is that Mars’ volcanism has incredible similarities, but also differences, to Earth,” Day said. “On the one hand, nakhlites and chassignites formed in similar ways to recent volcanism in places like Oahu in Hawaii. There, newly formed volcanoes press down on the mantle generating tectonic forces that produce further volcanism.”

However, Mars’ reservoirs are extremely ancient, separating shortly after the Red Planet formed.

“On Earth, plate tectonics has helped to mix reservoirs back together over time,” Day said. “In this sense, Mars provides an important link between what the early Earth may have looked like from how it looks today.”

The interaction between the crust and mantle layers through processes like volcanic activity played a crucial role in shaping Mars’ surface and geological features.

This study emphasizes the importance of Martian meteorites in uncovering the planet’s history. Continued analysis of these meteorites will remain essential as astronomers await samples returned directly from Mars by future missions. Understanding the interaction between Mars’ crust and mantle teaches scientists about the Red Planet and offers comparative insights into how planets like Earth evolved geologically.

The findings appeared in the journal Science Advances.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.