ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Mystery of Mars’ liquid past deepens. New study finds CO2 levels were too low to keep the planet warm

Things just got a whole lot more complicated.

Tibi PuiubyTibi Puiu
February 7, 2017
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit
Artist’s conception of modern Mars (left) and a younger, wetter Mars. Credit: NASA’s Goddard Space Flight Center.
Artist’s conception of modern Mars (left) and a younger, wetter Mars. Credit: NASA’s Goddard Space Flight Center.

Today, Mars is dry, barren, and seemingly devoid of all life. The planet’s surface, however, is littered with surfaces that must have been carved by water from rivers, streams, lakes, and oceans. If this is the case, what happened to Mars’ water? When did all that water disappear? These sort of questions keep some scientists awake at night and a new study makes this mystery even harder to crack.

Something’s missing

According to American researchers from NASA, 3.5-billion-year-old rocks retrieved from the floor of Gale Crater and analyzed on-site by the Curiosity Rover are devoid of carbonate. This idea was initially put forward by NASA researchers who studied data retrieved by orbiting probes that watch Mars from hundreds of miles above its surface.

This means that the concentration of greenhouse gases like CO2 or methane was up to tens of thousands of times lower than climate models require to warm Mars to a level that can sustain liquid water for a long period of time. Long enough to have flowing or standing water carve all those famous channels and canyons, at least.

[ALSO SEE] Why Mars is Red

Some of the rocks analyzed by Curiosity include mudstones, siltstones, sandstones and other sedimentary rocks. On Earth, greenhouse gases naturally react with minerals to form carbonate, and scientists don’t expect this chemistry to be any different on Mars.

Bedrock inside Mars' Gale Crater. Curiosity retrieved and analyzed rocks from the site which indicate little carbon dioxide was present in the atmosphere. Credit: NASA/JPL-Caltech
Bedrock inside Mars’ Gale Crater. Curiosity retrieved and analyzed rocks from the site which indicate little carbon dioxide was present in the atmosphere. Credit: NASA/JPL-Caltech

It could be that there was carbonate but it was later washed away by acid rain. But that’s unlikely since the rocks show no signs of an acid attack, the researchers note. Maybe other greenhouse gases like sulfur dioxide or nitrous oxide were in high enough concentration to warm Mars, but this too falls short under scrutiny.

“The downside of all these other greenhouse gases is that they tend to be quite reactive, so when you put them in the atmosphere, they don’t hang out an especially long time,” said lead researcher Thomas Bristow, a planetary scientist at NASA’s Ames Research Center in Moffett Field. “So the warming periods driven by those kinds of greenhouse gases are relatively short-lived, which is not consistent with observations from Gale Crater where we have evidence for lakes and rivers that persisted for hundreds of thousands or even millions of years.”

The findings published in the Proceedings of the National Academy of Sciences don’t dispute the fact that Mars was wet during its history — that’s undeniable given the sedimentary evidence. It’s just that we don’t know yet what mechanism could have kept the planet warm enough to sustain liquid water for long periods of time. We have a pretty good idea, however, what mechanisms were responsible for the water’s depletion.

RelatedPosts

We’ve been looking for life on Mars in all the wrong places – NASA says
Martian minerals might bear signatures of ancient life
Elon Musk warns that settling Mars will be harsh, even deadly for the first colonists
Canyons both on Earth and Mars may have been made by megafloods
Hydrogen in Mars’ upper atmosphere comes from water vapor in the lower atmosphere. Credit: NASA/GSFC; CU/LASP.
Hydrogen in Mars’ upper atmosphere comes from water vapor in the lower atmosphere. Credit: NASA/GSFC; CU/LASP.

Another recent study, this time made by researchers at University of Colorado, Boulder, found that Mars’ atmosphere has a sort of atmospheric ‘escape route’. According to data gathered by Mars Express, water molecules float higher up in the atmosphere during Mars’ warmer seasons allowing them to escape easier into space. On Earth, ‘cold traps’ keep the water close to the planet’s surface.

“Going back to the 1970s, the conventional picture of Martian hydrogen loss has been one of slow, steady escape over long time scales,” said Mike Chaffin, lead author of the new study. “With this work, we find that there are ways to produce much more seasonal variation than previously thought.”

“In this case, we had two unexpected findings: seasonal changes in hydrogen escape and excess water in the middle atmosphere. But taken together, these two unexpected things make sense,” said Chaffin. “It’s very satisfying as a scientist when that happens.”

 

 

 

 

Tags: Mars

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Agriculture

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

byTudor Tarita
1 week ago
Astronomy

A NASA Spacecraft Just Spotted a Volcano on Mars Like We Have Never Seen Before

byTudor Tarita
3 weeks ago
Astronomy

Astronomers Found a Volcano Hiding in Plain Sight on Mars

byTudor Tarita
3 weeks ago
Geology

Scientists Used Lasers To Finally Explain How Tiny Dunes Form — And This Might Hold Clues to Other Worlds

byKimberly M. S. Cartier
4 weeks ago

Recent news

solar panels

For the first time in history, solar was Europe’s top source of electricity

July 10, 2025

Scientists Found a Way to Turn Falling Rainwater Into Renewable Energy

July 10, 2025

Scientists Are Building a Quantum Computer With Chips Made out of Glass

July 10, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.