homehome Home chatchat Notifications


Lava-covered super-Earth and airless hot rocky are James Webb's next targets

Target acquired: geology from 50 light-years away.

Mihai Andrei
May 28, 2022 @ 10:32 am

share Share

Back in the day, if you wanted to do geology, you had to go and find nice outcrops and study them in detail. But now, the James Webb telescope will be used to study the geological diversity of planets across the solar system from light-years away.

Image credits: NASA / JPL.

The James Webb Space Telescope, one of the most exciting science projects in recent years, is about to switch on. Well, technically, it’s already switched on, but it’s close to being fully calibrated — and ready to kick into gear. Its first objectives are two rocky planets with the rather unglamorous names 55 Cancri e and LHS 3844.

But while their names may not be interesting, the planets themselves are.

Burning geology

55 Cancri e is a rocky exoplanet that orbits a Sun-like star. Its diameter is about two times bigger than the Earth’s, and its mass is 8.63 times that of the Earth — a so-called “super Earth” with a molten surface.

However, 55 Cancri e is much closer to its star than the Earth is to the Sun. It takes just 18 hours for the planet to complete a “year” (a full rotation around its star) – the distance between the planet and its star is just a fifth of the distance between Mercury and our Sun.

Researchers thought that because it’s so close to its star, 55 Cancri e must be tidally locked, like the moon is to the Earth. In other words, the star would only “see” one part of the planet, where it would be perpetual day, whereas the other side would be colder and shrouded in darkness. But this doesn’t seem to be the case.

Observations from NASA’s Spitzer Space Telescope suggest that the total amount of heat detected across the day varies, and the part which is hottest is not on the side facing the star.

Artistic depiction of 555 Cancri e. Image via Wiki Commons.

There’s still a possibility that the planet is tidally locked, in which case the observations could be explained if the planet has an atmosphere, but researchers aren’t sure what the atmosphere would be made of.

“55 Cancri e could have a thick atmosphere dominated by oxygen or nitrogen,” explained Renyu Hu of NASA’s Jet Propulsion Laboratory in Southern California, who leads a team that will use Webb’s Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI) to capture the thermal emission spectrum of the day side of the planet. “If it has an atmosphere, [Webb] has the sensitivity and wavelength range to detect it and determine what it is made of,” Hu added.

Another explanation could be that the planet is rotating three times for every two orbits (what’s known as a 3:2 resonance), much like Mercury.

“That could explain why the hottest part of the planet is shifted,” explained Alexis Brandeker, a researcher from Stockholm University who leads another team studying the planet. “Just like on Earth, it would take time for the surface to heat up. The hottest time of the day would be in the afternoon, not right at noon.”

Researchers want to explore these options in greater detail and figure out as much as possible about this exotic, hot super-Earth.

A hot, but different planet

Meanwhile, LHS 3844 b also orbits very close to its star, like 55 Cancri e — but its star is much smaller. As a result, the temperature isn’t high enough to melt its surface.

The planet has a low albedo, which suggests it has a darker surface, much like that of the Moon or Mercury. But what’s most interesting about it is its lack of an atmosphere. This lack of an obstructing atmosphere means researchers will be able to probe it more directly.

It’s also unclear why exactly the planet doesn’t have an atmosphere. This could be due to the way the planet was formed — beyond the so-called “snow line,” in which volatiles like water, ammonia, or carbon dioxide can exist and can contribute to an atmosphere; but it could also be owed to a cataclysmic impact.

Being able to survey planets like these in unprecedented detail is exciting, and the James Webb Space Telescope can enhance our understanding of the universe, probably in more ways than we envision. After decades of planning and work, it’s finally happening. Next up: 55 Cancri e and LHS 3844.

share Share

Researchers Turn 'Moon Dust' Into Solar Panels That Could Power Future Space Cities

"Moonglass" could one day keep the lights on.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.

The most successful space telescope you never heard of just shut down

An astronomer says goodbye to Gaia, the satellite that mapped the galaxy.

Astronauts are about to grow mushrooms in space for the first time. It could help us live on Mars

Mushrooms could become the ultimate food for living in colonies on the moon and Mars.

Dark Energy Might Be Fading and That Could Flip the Universe’s Fate

Astronomers discover hints that the force driving cosmic expansion could be fading

Curiosity Just Found Mars' Biggest Organic Molecules Yet. It Could Be A Sign of Life

The discovery of long-chain organic compounds in a 3.7-billion-year-old rock raises new questions about the Red Planet’s past habitability.

Astronomers Just Found Oxygen in a Galaxy Born Only 300 Million Years After the Big Bang

The JWST once again proves it might have been worth the money.

New NASA satellite mapped the oceans like never before

We know more about our Moon and Mars than the bottom of our oceans.