homehome Home chatchat Notifications


Gravity Maps of Mars provide a good look into the Red Planet

A new gravity map of Mars is offering researchers the possibility to study the geology of Mars.

Mihai Andrei
March 23, 2016 @ 1:55 pm

share Share

A new gravity map of Mars is offering researchers the possibility to study the geology of the Red Planet. The map, created with data from three of NASA’s spacecraft is the most detailed to date, offering an unprecedented glimpse inside our planetary neighbor. It highlights volcanoes, plateaus, and can even show water once flowed on Mars.

Gravity map of Mars. Red areas are denser.

A planet’s gravitational field isn’t uniform – some areas are denser than others, which means they exhibit a so-called gravitational anomaly. A location with a positive anomaly exhibits more gravity than the average, while a negative anomaly exhibits a lower value than the average. For instance, a massive iron deposit or a volcano would be visible on this map, as would a part of the crust with a lighter composition. In other words, white and red areas on this map are positive gravitational anomalies, while blue ones are negative anomalies.

“Gravity maps allow us to see inside a planet, just as a doctor uses an X-ray to see inside a patient,” said Antonio Genova of the Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts. “The new gravity map will be helpful for future Mars exploration, because better knowledge of the planet’s gravity anomalies helps mission controllers insert spacecraft more precisely into orbit about Mars. Furthermore, the improved resolution of our gravity map will help us understand the still-mysterious formation of specific regions of the planet.”

The map wasn’t easy to make. NASA monitored small changes in the orbits of three craft currently circling Mars — Mars Global Surveyor, Mars Odyssey and the Mars Reconnaissance Orbiter — for more than a decade to make the new map. It was a tricky calculation, relying on the slight differences in Mars’ gravity which changed the trajectory of the NASA spacecraft orbiting the planet. These small fluctuations were enough to construct the map, and the improved resolution is very important, as it allows the exploration of some finer features from the surface, such as ancient river valleys. It also provides better information for future missions to Mars and reveals some information about the deeper areas of Mars.

This is a Martian gravity map showing the Tharsis volcanoes and surrounding flexure. The white areas in the center are higher-gravity regions produced by the massive Tharsis volcanoes, and the surrounding blue areas are lower-gravity regions that may be cracks in the crust (lithosphere).

“With this new map, we’ve been able to see gravity anomalies as small as about 100 kilometers (about 62 miles) across, and we’ve determined the crustal thickness of Mars with a resolution of around 120 kilometers (almost 75 miles),” said Genova. “The better resolution of the new map helps interpret how the crust of the planet changed over Mars’ history in many regions.”

This new map also confirms the conclusions of previous efforts: Mars has a liquid outer core of molten rock. The new gravity solution improved the measurement of the Martian tides, which can enable geophysicists to construct better internal models of Mars.

Similar maps are routinely constructed for Earth, though of course at a much better resolution and scale. Gravity maps are useful for mineral and oil explorations, because they allow prospectors to identify the interesting geological structures. Micro-gravity can even be used for the detection of underground voids, and similar maps have also been constructed for the Moon.

Genova, who is affiliated with MIT but is located at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is the lead author of a paper on this research published online March 5 in the journal Icarus.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

Should we treat Mars as a space archaeology museum? This researcher believes so

Mars isn’t just a cold, barren rock. Anthropologists argue that the tracks of rovers and broken probes are archaeological treasures.

Proba-3: The Budget Mission That Creates Solar Eclipses on Demand

Now scientists won't have to travel from one place to another to observe solar eclipses. They can create their own eclipses lasting for hours.

This Supermassive Black Hole Shot Out a Jet of Energy Unlike Anything We've Seen Before

A gamma-ray flare from a black hole 6.5 billion times the Sun’s mass leaves scientists stunned.

Astronauts will be making sake on the ISS — and a cosmic bottle will cost $650,000

Astronauts aboard the ISS are brewing more than just discoveries — they’re testing how sake ferments in space.

Superflares on Sun-Like Stars Are Much More Common Than We Thought

Sun-like stars release massive quantities of radiation into space more often than previously believed.

Astronomers Just Found Stars That Mimic Pulsars -- And This May Explain Mysterious Radio Pulses in Space

A white dwarf/M dwarf binary could be the secret.

These Satellites Are About to Create Artificial Solar Eclipses — And Unlock the Sun's Secrets

Two spacecraft will create artificial eclipses to study the Sun’s corona.

Mars Dust Storms Can Engulf Entire Planet, Shutting Down Rovers and Endangering Astronauts — Now We Know Why

Warm days may ignite the Red Planet’s huge dust storms.

The Smallest Asteroids Ever Detected Could Be a Game-Changer for Planetary Defense

A new technique allowed scientists to spot the smallest asteroids ever detected in the main belt.