homehome Home chatchat Notifications


The Electron is round. Incredibly round

There are still many things we still don’t understand about the electron; only recently, a team from the Imperial College London concluded that the electron is actually incredibly round, thus making the most accurate estimate of its shape. The experiments, which spanned more than a decade, suggest that the electron differs from being round by […]

Mihai Andrei
May 25, 2011 @ 3:22 pm

share Share

There are still many things we still don’t understand about the electron; only recently, a team from the Imperial College London concluded that the electron is actually incredibly round, thus making the most accurate estimate of its shape. The experiments, which spanned more than a decade, suggest that the electron differs from being round by less than 0.000000000000000000000000001 cm. Just so you can get an estimate, if the electron were as big as the solar system, it would still be spherical to within the width of a human hair.

The physicists studied the electrons inside molecules from Ytterbium Fluoride; using an extremely precise laser, they measured the motion of the electrons – if the electrons were not spherical, they would exhibit a distinctive wobble. The researchers saw no such wobble.

The researchers claim they now intend to measure the electron’s shape even more closely – this would help provide some valuable information about antimatter. Antimatter behaves just like normal matter, but in reverse; for example, the electron counterpart would be positively charged, and called an antielectron (or a positron).

Research co-author, Dr Jony Hudson, from the Department of Physics at Imperial College London, said:

“We’re really pleased that we’ve been able to improve our knowledge of one of the basic building blocks of matter. It’s been a very difficult measurement to make, but this knowledge will let us improve our theories of fundamental physics. People are often surprised to hear that our theories of physics aren’t ‘finished’, but in truth they get constantly refined and improved by making ever more accurate measurements like this one.”

The currently accepted theory is that at the Big Bang, matter and antimatter were created in equal amounts, but due to some phenomena, antimatter pretty much dissappeared; understanding what properties caused this would be extremely useful in future research. To help improve their measurements, they intend to cool the molecules to extremely low temperatures, which would help control the exact motion of the molecules.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

Should we treat Mars as a space archaeology museum? This researcher believes so

Mars isn’t just a cold, barren rock. Anthropologists argue that the tracks of rovers and broken probes are archaeological treasures.

Proba-3: The Budget Mission That Creates Solar Eclipses on Demand

Now scientists won't have to travel from one place to another to observe solar eclipses. They can create their own eclipses lasting for hours.

This Supermassive Black Hole Shot Out a Jet of Energy Unlike Anything We've Seen Before

A gamma-ray flare from a black hole 6.5 billion times the Sun’s mass leaves scientists stunned.

Astronauts will be making sake on the ISS — and a cosmic bottle will cost $650,000

Astronauts aboard the ISS are brewing more than just discoveries — they’re testing how sake ferments in space.

Superflares on Sun-Like Stars Are Much More Common Than We Thought

Sun-like stars release massive quantities of radiation into space more often than previously believed.

Astronomers Just Found Stars That Mimic Pulsars -- And This May Explain Mysterious Radio Pulses in Space

A white dwarf/M dwarf binary could be the secret.

These Satellites Are About to Create Artificial Solar Eclipses — And Unlock the Sun's Secrets

Two spacecraft will create artificial eclipses to study the Sun’s corona.

Mars Dust Storms Can Engulf Entire Planet, Shutting Down Rovers and Endangering Astronauts — Now We Know Why

Warm days may ignite the Red Planet’s huge dust storms.

The Smallest Asteroids Ever Detected Could Be a Game-Changer for Planetary Defense

A new technique allowed scientists to spot the smallest asteroids ever detected in the main belt.