homehome Home chatchat Notifications


Coldest radio-emitting star is colder than a camp fire

The ultracool brown dwarf is colder than a campfire.

Jordan Strickler
July 13, 2023 @ 10:50 pm

share Share

brown dwarf illustration
Brown dwarfs are often called “failed stars.” They form like stars but are not massive enough to fuse hydrogen into helium as stars do. Credit: WikiMedia Commons.

University of Sydney astronomers have discovered a tiny, inconspicuous star that is now officially the coldest star to have ever been observed emitting radio waves. The star under investigation, T8 Dwarf WISE J062309.94045624.6, is about 37 light-years away from Earth. This adds a new dimension to our understanding of stellar dynamics and magnetic fields.

The study, published in The Astrophysical Journal, finds the star in question is an “ultracool brown dwarf,” a gas-filled sphere simmering at about 800 degrees Fahrenheit (425 degrees Celsius). That’s actually lower than a typical campfire which can range from 1500 to 1650 Fahrenheit (815 to 898 Celsius).

To put it in perspective, our Sun’s surface reaches a raging 5600-degree Celsius inferno sustained by nuclear fusion. But this brown dwarf isn’t the coldest star ever found, but it is the coolest star to have undergone radio astronomy analysis.

“It’s very rare to find ultracool brown dwarf stars like this producing radio emission,” said Kovi Rose, lead author and Ph.D. student at the University of Sydney.

“That’s because their dynamics do not usually produce the magnetic fields that generate radio emissions detectable from Earth. Finding this brown dwarf producing radio waves at such a low temperature is a neat discovery.

The brown dwarf in question is smaller than Jupiter (between 0.65 and 0.95 its radius) but more massive, somewhere between four and 44 times the mass of Jupiter. (Credit: NASA/JPL)

Astronomers are puzzled by how radio waves originate in brown dwarfs. Less than 10% of brown dwarfs release these emissions. Larger “main sequence” stars like the Sun are relatively well understood. It is thought that ultracool dwarfs’ swift rotation helps to produce their powerful magnetic fields.

Electrical currents can develop when the magnetic field and the dwarf’s ionized atmosphere rotate at different rates. In this case, electrons are believed to flow toward the magnetic polar region of the star, producing radio waves, leading to periodically repeating radio bursts.

Brown dwarfs, so named because of their low energy and light emissions, lack the mass of other stars like the Sun to support nuclear fusion. They occupy a special space between the biggest gas giant planets, like Jupiter, and the smallest hydrogen-burning stars.

Caltech astronomers made the planet’s initial discovery in 2011. The star is thought to be at least four times more massive than Jupiter with a radius that ranges from 0.65 to 0.95 times that of Jupiter. Put into perspective, the Solar System‘s largest planet is 1,000 times smaller than the Sun.

“Deepening our knowledge of ultracool brown dwarfs like this one will help us understand the evolution of stars, including how they generate magnetic fields,” Rose said.

share Share

Trump-Appointed EPA Plans to Let Most Polluters Stop Reporting CO2 Emissions

One expert said it's like turning off a dying patient's monitor.

Denisovan Jaw Found in Taiwan Strait Changes the Human Migration Map

Our elusive ancient cousins once roamed much further east than previously believed

The secret to making plant-based milk tastier and healthier: bacteria

Instead of masking off flavors with sugar, salt, or artificial additives, companies can let bacteria do the work.

A 30,000-Year-Old Feather Is a First-of-Its-Kind Fossil

A new analysis of a fossil found in 1889 has unveiled the presence of zeolites—and an entirely new mineralization method.

This Sensor Box Can Detect Deadly Bird Flu in 5 Minutes. But It Won't Stop the Current Outbreak

The biosensor can detect viral airborne particles.

In 2013, dolphins in Florida starved. Now, we know why

The culprit is a very familiar one. It's us.

Researchers can't rule out the possibility of life existing on Titan

It wouldn't be very much, but it's exciting anyway.

The Earth's oceans were once green. Then, cyanobacteria and iron came in

A pale green dot?

Could man's best friend be an environmental foe?

Even good boys and girls can disrupt wildlife in ways you never expected.

Musk's DOGE Fires Federal Office That Regulates Tesla's Self-Driving Cars

Mass firings hit regulators overseeing self-driving cars. How convenient.