homehome Home chatchat Notifications


New analysis reveals that Ceres' spots harbor a lot of organic material

It's not a sign that Ceres ever harbored life, but it surely doesn't hurt its odds.

Alexandru Micu
June 14, 2018 @ 6:05 pm

share Share

New research shows Ceres’ surface is dotted with organic matter — much more of it that we’ve previously realized. The findings raise questions regarding how this material came to be, and why it concentrates in patches.

Ceres organic matter.

Spots of organic material near Ernutet crater on the dwarf planet Ceres.
Credit: NASA / Hannah Kaplan.

There seems to be more to the organic material the Dawn craft discovered on Ceres last year than we initially thought. The patches of carbon-based compounds may contain a much higher abundance of organic matter than initial analysis revealed, according to a new analysis from Brown University.

Organic, free-range Ceres

“What this paper shows is that you can get really different results depending upon the type of organic material you use to compare with and interpret the Ceres data,” said Hannah Kaplan, lead researcher of the study. “That’s important not only for Ceres, but also for missions that will soon explore asteroids that may also contain organic material.”

The discovery of these organic patches on Ceres last year was made using the Visible and Infrared (VIR) Spectrometer on the Dawn spacecraft, which has been in orbit of the dwarf planet since 2015. The finding was met with enthusiasm at NASA and beyond: organic molecules are, after all, the building blocks of life. So, scientists are understandably keen on finding out how such matter is distributed on planets other than our own. The presence of these compounds on Ceres isn’t proof that there was once life on this bit of rock. However, it definitely increases the odds. Factor in that Ceres also boasts a sizeable stash of water ice, another fundamental requirement for life as we know it, and you get quite the exciting place.

The picture may get even better, however. Dawn’s VIR instrument analyzed the patches on Ceres’ surface using the way its surface interacts with incoming light. By looking at what wavelengths these patches reflected and absorbed, ground control could estimate their chemical makeup. In the region of Ernutet Crater (Ceres’ northern hemisphere), Dawn picked up signals consistent with organic molecules. Next, NASA needed to know just how much organic material they had found — so they compared the VIR data to similar readings performed on samples of organic material from Earth. Based on this comparison, they concluded that Ceres’ spots comprised roughly 10% organic matter.

Kaplan and her team, however, weren’t satisfied with the reference standard NASA used — so they re-did the comparison using a different one. Instead of using Earth-borne rocks, they used samples of carbonaceous chondrite meteorites. Previous analysis of such space rocks that fell to Earth revealed that they contained organic material that is slightly different from that native to our planet.

“What we find is that if we model the Ceres data using extraterrestrial organics, which may be a more appropriate analog than those found on Earth, then we need a lot more organic matter on Ceres to explain the strength of the spectral absorption that we see there,” Kaplan said.

“We estimate that as much as 40 to 50 percent of the spectral signal we see on Ceres is explained by organics. That’s a huge difference compared to the six to 10 percent previously reported based on terrestrial organic compounds.”

Unknown origin

The team proposes two possible explanations for how organic material popped up on Ceres in such high concentrations. They could either have been produced on Ceres itself and then blasted to the surface. Alternatively, they could have been delivered by impacts with organic-rich comets or asteroids.

In the case of delivery, comets are more likely culprits than asteroids — the former tend to have higher contents of organic material, around 40 to 50 percent, which would be consistent with Ceres’ patches. However, this explanation seems unlikely, the team notes. The violence and heat of these impacts would likely destroy a substantial amount of the original organic material, meaning we’d see much lower concentrations on the surface.

The other explanation, that of in-situ generation, is also problematic. Organic material has only been identified in small patches on Ceres’ northern hemisphere — and, if the team’s findings are correct, in high concentrations. It’s a lot of organic material spread over a very small area, and we have no idea how it could get like this.

“If the organics are made on Ceres, then you likely still need a mechanism to concentrate it in these specific locations or at least to preserve it in these spots,” said Ralph Milliken, a study co-author.

“It’s not clear what that mechanism might be. Ceres is clearly a fascinating object, and understanding the story and origin of organics in these spots and elsewhere on Ceres will likely require future missions that can analyze or return samples.”

It’s not all unanswered questions. The research will help improve our ability to analyze the chemical make-up of extraterrestrial bodies. The team hopes their findings will “provide a framework of how to better interpret data of asteroids and make links between spacecraft observations and samples in our meteorite collection.”

With NASA announcing that it discovered organic material on Mars just one week ago, it seems that the universe may be a much more organic place than we’d assumed.

The paper “New Constraints on the Abundance and Composition of Organic Matter on Ceres” has been published in the journal Geophysical Research Letters.

share Share

Evolution just keeps creating the same deep-ocean mutation

Creatures at the bottom of the ocean evolve the same mutation — and carry the scars of human pollution

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity