homehome Home chatchat Notifications


Some stars may have small black holes at their core — and we should be able to find them

Do some stars swallow black holes completely?

Mihai Andrei
December 19, 2023 @ 3:40 pm

share Share

The idea of a black hole residing at the heart of our Sun sounds like pure science fiction. But recent research suggest that this could be a realistic possibility. More than that, it suggests that some stars may harbor primordial black holes that were formed immediately after the Big Bang.

Artistic depiction of our search for mini black holes at the center of some stars
Artistic depiction of our search for mini black holes at the center of some stars. Image generated by AI (Dall-E 3).

Black hole Sun

In 1994, the grunge band Pearl Jam released a classic song called “Black Hole Sun”. It’s a catchy tune but it’s not exactly a scientific statement. Or is it?

Black holes famously absorb everything around them, not letting even light escape. So how could a black hole and a star coexist? It was Stephen Hawking that first proposed this idea. Hawking proposed that on very rare occasions, newly forming stars could capture small primordial black holes with about the mass of an asteroid. These are called Hawking stars.

But how could a black hole with such a small mass even exist? Essentially, it would have to be a black hole about the size of an atom. Well, the authors of the new study says stars could harbor even bigger black holes.

“Stars harboring a black hole at their center can live surprisingly long,” said Earl Patrick Bellinger, lead author of the study, for New Atlas. “Our Sun could even have a black hole as massive at the planet Mercury at its center without us noticing.”

Stars with black holes at their centers

The study, published in The Astrophysical Journal, presents a new approach to solar evolution models incorporating a central black hole. These models suggest that the Sun, and by extension other stars, could have primordial black holes at their cores and that wouldn’t really interfere with their evolution. The Sun, with a hypothetical black hole at its core, could first dim significantly, then expand into a fully convective star with enriched helium abundance and then eventually become a subsolar-mass black hole.

But all this shows is that there could be a theoretical way for such stars to exist. How would we check whether they actually exist?

Based on existing models, such mini-black holes could be detected through a technique called asteroseismology. Basically, if a star were to have a black hole at its center, its mass would be distributed differently, which would shift the convection patterns in the star’s interior. This opens up the possibility of using the technique as a tool for exploring and validating these groundbreaking models.

“The unique internal structures of stars harboring black holes may make it possible for asteroseismology to discover them, should they exist,” the researchers conclude in their study.

These stars could even be relatively common, at least in some galactic neighborhoods.

“There are good reasons to think that Hawking stars would be common in globular clusters and ultra-faint dwarf galaxies,” said Professor Matt Caplan, an author of the study. “This means that Hawking stars could be a tool for testing both the existence of primordial black holes, and their possible role as dark matter.”

Why this matters so much

This would truly be a paradigm shift. Essentially, the research offers new perspectives and challenges existing models of stellar dynamics — a black hole “seed” for some stars is a pretty crazy idea. Even the fact that it’s plausible is stunning.

If confirmed, it would also highlight something completely unexpected about stars and the early universe. For starters, we don’t even know if these primordial black holes exist. If they do, they could even answer questions regarding dark matter.

Dark matter, the elusive and invisible substance that makes up about 27% of the universe, remains one of the most profound mysteries in modern astrophysics. We can’t see it and we have no idea what it is, although we see its effects. But some astronomers suspect that it could be closely related to primordial black holes — and now, we could be on their trail.

The research was published in The Astrophysical Journal.

share Share

Tennis May Add Nearly 10 Years to Your Life and Most People Are Ignoring It

Could a weekly match on the court be the secret to a longer, healthier life?

Humans Have Been Reshaping Earth with Fire for at Least 50,000 Years

Fossil charcoal reveals early humans’ growing impact on the carbon cycle before the Ice Age.

The Strangest Microbe Ever Found Straddles The Line Between Life and Non-Life

A newly discovered archaeon blurs the boundary between cells and viruses.

This $8750 Watch Was Designed for Space and Could Finally Replace Apollo-era Omega Watches

An audacious new timepiece dares to outshine Omega’s legacy in space

The Brain May Make New Neurons in Adulthood and Even Old Age

Researchers identify the birthplace of new brain cells well into late adulthood.

Your gut has a secret weapon against 'forever chemicals': microbes

Our bodies have some surprising allies sometimes.

High IQ People Are Strikingly Better at Forecasting the Future

New study shows intelligence shapes our ability to forecast life events accurately.

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Scientists Ranked the Most Hydrating Drinks and Water Didn't Win

Milk is more hydrating than water. Here's why.

Methane Leaks from Fossil Fuels Hit Record Highs. And We're Still Looking the Other Way

Powerful leaks, patchy action, and untapped fixes keep methane near record highs in 2024.