homehome Home chatchat Notifications


Scientists reproduce conditions from early universe

Physicists have successfully reproduced a pattern resembling the cosmic microwave background radiation in an experiment which used ultracold cesium atoms in a vacuum chamber. This is the first experiment which recreates at least some of the conditions from the Big Bang. “This is the first time an experiment like this has simulated the evolution of […]

Mihai Andrei
September 2, 2013 @ 3:59 am

share Share

Physicists have successfully reproduced a pattern resembling the cosmic microwave background radiation in an experiment which used ultracold cesium atoms in a vacuum chamber. This is the first experiment which recreates at least some of the conditions from the Big Bang.

“This is the first time an experiment like this has simulated the evolution of structure in the early universe,” said Cheng Chin, professor in physics. Chin and his associates reported their feat in the Aug. 1 edition of Science Express, and it will appear soon in the print edition of Science.

universe big bang

The cosmic microwave background radiation (CMB or CMBR) is basically the thermal radiation left over from the Big Bang. It is very interesting for astrophyicists because it apparently exhibits a large degree of uniformity throughout the entire universe (it has more or less the same values everywhere you look for it). If you analyze the “void” between stars and even galaxies with a sufficiently sensitive radio telescope, you’ll see a faint background glow, almost exactly the same in all directions, that is not associated with … anything. The glow has the most energy in the microwave spectrum. Its rather serendipitous discovery took place in 1964, and it earned its finders a Nobel prize in 1978.

You can think of this radiation as the echo of the Big Bang – by studying it, we get a somewhat clear idea how the Universe looked some 380,000 years following its ‘birth’ – incredibly early; it doesn’t go much before or after, it’s basically a snapshot of the past. But as it turns out, under certain conditions, a cloud of atoms chilled to a billionth of a degree above absolute zero in a vacuum chamber displays phenomena similar to those which followed the big bang.

“At this ultracold temperature, atoms get excited collectively. They act as if they are sound waves in air,” he said.

This neatly correlates with what cosmologists speculated:

“Inflation set out the initial conditions for the early universe to create similar sound waves in the cosmic fluid formed by matter and radiation,” Hung said.

big bang

The tiny universe which was simulated in Chin’s laboratory measured no more than 70 microns across (about as big as a human hair) – but the physics is the same regardless of the size of your universe.

“It turns out the same kind of physics can happen on vastly different length scales,” Chin explained. “That’s the power of physics.”

But there is an important difference – and one that works greatly to our advantage:

“It took the whole universe about 380,000 years to evolve into the CMB spectrum we’re looking at now,” Chin said. But the physicists were able to reproduce much the same pattern in approximately 10 milliseconds in their experiment. “That suggests why the simulation based on cold atoms can be a powerful tool,” Chin said.

If you want, you can think of the Big Bang in oversimplified terms as an explosion which made a big BOOM! These sound waves began interfering with each other creating complicated patterns – the so-called Sakharov acoustic oscillations.

“That’s the origin of complexity we see in the universe,” he said.

This is indeed a powerful tool to find out more about our infant universe, but this is just the first step. Chin and his team plan to move on to use these Sakharov oscillations to study the property of this two-dimensional superfluid at different initial conditions, then cross check their results with what is observed by cosmologists. They will use the same type of experiment but branch out to other fields of cosmology, including the formation of galaxies and even black hole dynamics.

“We can potentially use atoms to simulate and better understand many interesting phenomena in nature,” Chin said. “Atoms to us can be anything you want them to be.”

Interestingly enough, nobody on this team was a cosmologist.

Journal Reference: C.-L. Hung, V. Gurarie, C. Chin. From Cosmology to Cold Atoms: Observation of Sakharov Oscillations in a Quenched Atomic Superfluid. DOI: 10.1126/science.1237557

share Share

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Proba-3: The Budget Mission That Creates Solar Eclipses on Demand

Now scientists won't have to travel from one place to another to observe solar eclipses. They can create their own eclipses lasting for hours.

The Universe’s Structure May Be 'Smoother' Than Expected, Raising Big Questions for the Standard Model of Cosmology

We may be on the cusp of finally breaking the standard model of cosmology.

Scientists find the biggest black hole jets — "we are talking about 140 Milky Way diameters"

Talk about a giant in the universe.

NASA researchers find two black holes heading for a merger in our cosmic neighborhood

This is the closest pair detected in the local universe using multiwavelength (visible and X-ray light) observations.

Cosmology is at a tipping point – we may be on the verge of discovering new physics

For the past few years, a series of controversies have rocked the well-established field of cosmology. In a nutshell, the predictions of the standard model of the universe appear to be at odds with some recent observations. There are heated debates about whether these observations are biased, or whether the cosmological model, which predicts the […]

Astronomers use JWST to peer into the heart of the Crab Nebula

Scientific papers rarely have images this spectacular in them.

Record-breaking quasar ate one Sun's mass *per day* and grew to an unimaginable mass

Oh, you thought the Sun was big? That's cute.

This planet is half lava and it's the most metal thing

When you look at a lot of planets, you're bound to find some unusual ones — but this one is something else.

Some stars may have small black holes at their core — and we should be able to find them

Do some stars swallow black holes completely?