homehome Home chatchat Notifications


Astronauts may suffer from long-term brain damage, blood tests show

Astronauts may have to shorten their missions on the space station to mitigate this problem.

Tibi Puiu
November 5, 2021 @ 8:51 pm

share Share

Credit: Pixabay.

Humans are the product of millions of years of evolution, during which we’ve been forged by evolutionary forces to adapt to a wide range of environments here on Earth. But space? No creature, let alone humans, is made for that (unless you count tardigrades). Even cushioned inside the International Space Station and its life support systems that mimic Earth’s atmosphere, astronauts are exposed to significant health risks — some of which may follow astronauts for the rest of their lives.

According to a new study, prolonged spaceflight may cause some brain damage and accelerate neurodegeneration. This raises yet another challenging concern that may prove to be a major obstacle in the way towards fulfilling our multi-planetary ambitions.

There have been more than 100 astronauts who have visited the International Space Station over the course of its 22-year history. Most have spent more than six months exposed to the effect of microgravity — enough for scientists to understand that the human brain copes poorly to its effects.

Astronauts’ faces often turn red and become bloated, a phenomenon known as the Charlie Brown effect, due to blood and cerebrospinal fluid shifting towards the head. These fluid flow shifts cause space motion sickness (you heard that right), headaches, and nausea. The same mechanism is responsible for building up pressure inside the skull, which may ultimately be responsible for blurred vision.

Microgravity is also known to weaken bones, atrophy muscles, and shorten eyeballs. However, the effects on the brain are the most concerning, and a new study suggests that these consequences may linger for some time.

Researchers at the University of Gothenburg and Ludwig-Maximilians University Munich analyzed blood samples taken from five Russian cosmonauts before and after they completed their six-month mission on the space station. The post-mission blood samples were taken one day, one week, and three weeks after safely landing back on Earth.

Using state-of-the-art molecule array testing, the researchers measured the levels of five important biomarkers for brain health: neurofilament light (NfL), glial fibrillary acidic protein (GFAP), total tau and the amyloid-beta proteins Aβ40 and Aβ42.

The results showed that even three weeks after returning to Earth, the astronauts had elevated levels of NfL, GFAP and Aβ40. High levels of these biomarkers are associated with physical damage to the brain’s connecting fibres, known as axons. In fact, the trends of the biomarkers suggest that different types of functional tissue in the brain are affected by microgravity, the authors reported in the journal  JAMA Neurology.

“All relevant tissue types of the brain seem to be affected,” corresponding author Peter zu Eulenburg of Ludwig-Maximilians University Munich told Physics World.

Although this minor brain damage is undeniably connected to spaceflight, scientists don’t know yet what exactly may be causing it. Stressors due to launch and landing, weightlessness, and changes in brain fluid are all viable explanations currently on the table.

What’s certain is that things aren’t looking too bright, especially considering the farther away humans stray from Earth the greater the risks. A 2015 study exposed mice to radiation similar to the cosmic rays that permeate space and found the animals experienced declines in cognition and changes in the structure and integrity of brain nerve cells and synapses (where nerve impulses are sent and received).

Astronauts traveling to Mars would be exposed to cosmic radiation for at least one and a half years. If studies on mice transfer to humans, researchers at the University of California, Irvine, estimated  1 in 5 astronauts on a deep space mission would likely suffer from anxiety; 1 in 3 would be likely to deal with memory issues; and all of them may struggle to make new decisions. Not something you’d like to see in a crew with a bad case of cabin fever trapped in a spaceship.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.