homehome Home chatchat Notifications


Astronauts may suffer from long-term brain damage, blood tests show

Astronauts may have to shorten their missions on the space station to mitigate this problem.

Tibi Puiu
November 5, 2021 @ 8:51 pm

share Share

Credit: Pixabay.

Humans are the product of millions of years of evolution, during which we’ve been forged by evolutionary forces to adapt to a wide range of environments here on Earth. But space? No creature, let alone humans, is made for that (unless you count tardigrades). Even cushioned inside the International Space Station and its life support systems that mimic Earth’s atmosphere, astronauts are exposed to significant health risks — some of which may follow astronauts for the rest of their lives.

According to a new study, prolonged spaceflight may cause some brain damage and accelerate neurodegeneration. This raises yet another challenging concern that may prove to be a major obstacle in the way towards fulfilling our multi-planetary ambitions.

There have been more than 100 astronauts who have visited the International Space Station over the course of its 22-year history. Most have spent more than six months exposed to the effect of microgravity — enough for scientists to understand that the human brain copes poorly to its effects.

Astronauts’ faces often turn red and become bloated, a phenomenon known as the Charlie Brown effect, due to blood and cerebrospinal fluid shifting towards the head. These fluid flow shifts cause space motion sickness (you heard that right), headaches, and nausea. The same mechanism is responsible for building up pressure inside the skull, which may ultimately be responsible for blurred vision.

Microgravity is also known to weaken bones, atrophy muscles, and shorten eyeballs. However, the effects on the brain are the most concerning, and a new study suggests that these consequences may linger for some time.

Researchers at the University of Gothenburg and Ludwig-Maximilians University Munich analyzed blood samples taken from five Russian cosmonauts before and after they completed their six-month mission on the space station. The post-mission blood samples were taken one day, one week, and three weeks after safely landing back on Earth.

Using state-of-the-art molecule array testing, the researchers measured the levels of five important biomarkers for brain health: neurofilament light (NfL), glial fibrillary acidic protein (GFAP), total tau and the amyloid-beta proteins Aβ40 and Aβ42.

The results showed that even three weeks after returning to Earth, the astronauts had elevated levels of NfL, GFAP and Aβ40. High levels of these biomarkers are associated with physical damage to the brain’s connecting fibres, known as axons. In fact, the trends of the biomarkers suggest that different types of functional tissue in the brain are affected by microgravity, the authors reported in the journal  JAMA Neurology.

“All relevant tissue types of the brain seem to be affected,” corresponding author Peter zu Eulenburg of Ludwig-Maximilians University Munich told Physics World.

Although this minor brain damage is undeniably connected to spaceflight, scientists don’t know yet what exactly may be causing it. Stressors due to launch and landing, weightlessness, and changes in brain fluid are all viable explanations currently on the table.

What’s certain is that things aren’t looking too bright, especially considering the farther away humans stray from Earth the greater the risks. A 2015 study exposed mice to radiation similar to the cosmic rays that permeate space and found the animals experienced declines in cognition and changes in the structure and integrity of brain nerve cells and synapses (where nerve impulses are sent and received).

Astronauts traveling to Mars would be exposed to cosmic radiation for at least one and a half years. If studies on mice transfer to humans, researchers at the University of California, Irvine, estimated  1 in 5 astronauts on a deep space mission would likely suffer from anxiety; 1 in 3 would be likely to deal with memory issues; and all of them may struggle to make new decisions. Not something you’d like to see in a crew with a bad case of cabin fever trapped in a spaceship.

share Share

Tennis May Add Nearly 10 Years to Your Life and Most People Are Ignoring It

Could a weekly match on the court be the secret to a longer, healthier life?

Humans Have Been Reshaping Earth with Fire for at Least 50,000 Years

Fossil charcoal reveals early humans’ growing impact on the carbon cycle before the Ice Age.

The Strangest Microbe Ever Found Straddles The Line Between Life and Non-Life

A newly discovered archaeon blurs the boundary between cells and viruses.

This $8750 Watch Was Designed for Space and Could Finally Replace Apollo-era Omega Watches

An audacious new timepiece dares to outshine Omega’s legacy in space

The Brain May Make New Neurons in Adulthood and Even Old Age

Researchers identify the birthplace of new brain cells well into late adulthood.

Your gut has a secret weapon against 'forever chemicals': microbes

Our bodies have some surprising allies sometimes.

High IQ People Are Strikingly Better at Forecasting the Future

New study shows intelligence shapes our ability to forecast life events accurately.

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Scientists Ranked the Most Hydrating Drinks and Water Didn't Win

Milk is more hydrating than water. Here's why.

Methane Leaks from Fossil Fuels Hit Record Highs. And We're Still Looking the Other Way

Powerful leaks, patchy action, and untapped fixes keep methane near record highs in 2024.