homehome Home chatchat Notifications


A bunch of baby stars are orbiting around the black hole at the center of our galaxy

Baby stars circling the supermassive black hole Sgr A* at high speed resemble a bee swarm.

Jordan Strickler
June 15, 2024 @ 12:32 am

share Share

Artistic impression of a material disc with illuminated gas around Sagittarius A*. (Credit: WikiMedia Commons)

Astronomers cooperating on a multi-university study have made a fascinating discovery: a group of young stellar objects (YSOs) orbiting the supermassive black hole Sagittarius A* (Sgr A*) at the center of our galaxy. These young stars, along with the already known S-type stars (an intermediate type of star), exhibit surprisingly organized behavior, challenging previous astronomical theories.

Surprising baby stars

Approximately 30 years ago, astronomers identified a cluster of highly dynamic stars, known as S stars, near Sgr A*. These stars orbit the supermassive black hole at incredible speeds, completing their orbits in just a few years. The presence of these stars in such a hostile environment was very unexpected.

“The S stars were found to be surprisingly young,” said study author Florian Peißker from the University of Cologne’s Institute for Astrophysics. “According to conventional theories, the additional presence of a stellar kindergarten composed of YSOs is completely unexpected.”

Recent technological advancements and long-term observations have provided new insights into these stellar objects. In 2012, an object thought to be a gas cloud was discovered near Sgr A*. Initially believed to be destined for destruction by the black hole, further observations suggested it might be a young stellar object enveloped in a dusty cloud.

The research team conducted a detailed kinematic analysis of a dozen objects in the vicinity of Sgr A*, revealing that they were significantly younger than the known S stars.

“Interestingly, these YSOs exhibit the same behavior as S stars,” Peißker said. “This means that the YSOs circumnavigate the supermassive black hole with speeds of several thousand kilometers per hour in a few years.”

Why Their Presence is Puzzling

The presence of these young stars near Sgr A* is interesting for several reasons. First, the region around a supermassive black hole is incredibly hostile, with intense gravitational forces, high-energy radiation, and turbulent conditions that should prevent star formation. Typically, such environments are expected to contain old, dim stars that have survived the black hole’s influence over long periods.

Second, conventional star formation theories suggest that young stars form in calmer, more stable environments like molecular clouds. The discovery of young stars so close to Sgr A* challenges these theories, as it implies that star formation can occur under extreme conditions or that these stars migrated from a more distant, safer region.

Third, these stars’ organized, disk-like orbits suggest a common formation history or migration pattern influenced by the supermassive black hole’s gravitational forces. This organized structure is unexpected, as random, chaotic orbits would be more likely given the turbulent environment.

What appears as a chaotic swarm of stars actually follows a specific pattern. Both the YSOs and S stars are arranged in a disk-like formation around the supermassive black hole.

“This means that there are specific preferred star constellations,” Peißker said. “The distribution of both star variations resembles a disk, which gives the impression that the supermassive black hole forces the stars to assume an organized orbit.”

This discovery significantly impacts astronomers’ understanding of star formation and dynamics in extreme environments. It challenges the expectation that only old, dim stars could survive near a supermassive black hole. The organized orbits suggest a common formation history or migration path influenced by Sgr A*’s immense gravitational forces.

Astronomers continue to monitor these high-speed stellar objects. In time, they hope to uncover more about their origins and the stars’ mechanisms using advanced telescopes.

The discovery was detailed in the study “Candidate young stellar objects in the S-cluster: Kinematic analysis of a subpopulation of the low-mass G objects close to Sgr A*,” published in Astronomy & Astrophysics.

share Share

Interstellar comet: Everything We Know About 3I/ATLAS

The visitor is simply passing through our solar system.

Japan’s Wooden Satellite Survived Orbit for 116 Days. Now Scientists Want a Better Version

With lessons learned from their first attempt, Kyoto University scientists hope a second CubeSat made of magnolia will spark an age of wooden spacecraft.

Your Personal Air Defense System Is Here and It’s Built to Vaporize Up to 30 Mosquitoes per Second with Lasers

LiDAR-guided Photon Matrix claims to fell 30 mosquitoes a second, but questions remain.

Astronomers Found a Star That Exploded Twice Before Dying

A rare double explosion in space may rewrite supernova science.

Buried in a Pot, Preserved by Time: Ancient Egyptian Skeleton Yields First Full Genome

DNA from a 4,500-year-old skeleton reveals ancestry links between North Africa and the Fertile Crescent.

Menstrual Cups Passed a Brutal Space Test. They Could Finally Fix a Major Problem for Many Astronauts

Reusable menstrual cups pass first test in space-like flight conditions.

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

The spacecraft crashed into the Pacific Ocean after a parachute failure, ending a bold experiment in space biology and memorial spaceflight.

The James Webb telescope just found a planet by actually ‘seeing’ it

It's exactly what we were hoping from JWST.

An Asteroid Might Hit the Moon in 2032 and Turn It Into a Massive Fireworks Show from Earth

The next big space threat isn't to Earth. It's to the Moon.

This Colorful Galaxy Map Is So Detailed You Can See Stars Being Born

Astronomers unveil the most detailed portrait yet of a nearby spiral galaxy’s complex inner life