homehome Home chatchat Notifications


The world's smallest pipes could one day flow useful molecules into our cells -- completely leak-free

Body plumbing sounds sci-fi, but we're slowly making it real.

Alexandru Micu
September 9, 2022 @ 9:18 pm

share Share

Researchers at Johns Hopkins University have devised self-assembling, nano-scale pipes that are leak-free and can be used to install plumbing into our cells.

The nanopipes, visible as the thin green lines, attach to cells. Image credits Schulman Lab / Johns Hopkins University.

Leak-free piping is something everyone who’s ever had a plumbing issue would swear by. And while our bathrooms and kitchens will have to wait until such pipes become available, researchers at Johns Hopkins University have developed a way to ensure that nano-scale piping they are developing avoids any and all leaks.

These pipes, which self-assemble from nanotubes and self-repair, can be connected to various biological structures in our bodies, they add. As such, their discovery brings us one step closer to one day developing nanotube networks that can deliver drugs or other needed molecules to specific cells in our bodies.

Miniature delivery

“This study suggests very strongly that it’s feasible to build nanotubes that don’t leak using these easy techniques for self-assembly, where we mix molecules in a solution and just let them form the structure we want,” said Rebecca Schulman, an associate professor of chemical and biomolecular engineering at Johns Hopkins who co-led the research. “In our case, we can also attach these tubes to different endpoints to form something like plumbing.”

The findings are based on experiments the team ran using tubes that are around seven nanometers in diameter and several microns long. Their work builds on established techniques of repurposing bits of DNA as building blocks, growing and repairing the tubes while allowing them to connect to specific structures in the body. While previous research had designed similar structures known as nanopores, those focused on transporting molecules through artificial cellular membranes.

Where these nanopores are like fittings to allow pipes to pass through a wall, the nanotubes are the pipes themselves, connecting these fittings to other equipment such as storage tanks or pumps.

“Building a long tube from a pore could allow molecules not only to cross the pore of a membrane that held the molecules inside a chamber or cell, but also to direct where those molecules go after leaving the cell,” Schulman said. “We were able to build tubes extending from pores much longer than those that had been built before that could bring the transport of molecules along nanotube ‘highways’ close to reality.”

The nanotubes are formed from strands of DNA that are woven together. But this weave leaves tiny gaps in between individual DNA molecules. Although they are very small in size, it was unclear whether these gaps would leave the tubes unable to transport molecules without some leaking out.

The study focused on answering this question. The team performed the equivalent of capping one end of the tube and pouring water through the other to check for leaks and flow rates inside the tubes. The caps were made of special DNA “corks”, and the tubes were then filled with a solution of fluorescent molecules, which could be more readily tracked. During the experiment, the team monitored the shapes of the tubes, how they connected to specific nanopores, the flow rate of the fluorescent solution inside them.

The team reports that the tubes are, in fact, leak-free. The results also showed that these tubes can be used to transport molecules through an artificial membrane.

“Now we can call this more of a plumbing system, because we’re directing the flow of certain materials or molecules across much longer distances using these channels,” Li said. “We are able to control when to stop this flow using another DNA structure that very specifically binds to those channels to stop this transport, working as a valve or a plug.”

As this technology is still in its infancy, it is still hard to estimate how it will evolve in the future. For now, the team is confident that these nano-pipes can be used to study and treat diseases like cancer by delivering certain molecules to affected cells.

Going forward, the team will be investigating how the tubes interact with both synthetic and natural cells.

The paper “Leakless end-to-end transport of small molecules through micron-length DNA nanochannels” has been published in the journal Science Advances.

share Share

Some people are just wired to like music more, study shows

Most people enjoy music to some extent. But while some get goosebumps from their favorite song, others don’t really feel that much. A part of that is based on our culture. But according to one study, about half of it is written in our genes. In one of the largest twin studies on musical pleasure […]

This Stinky Coastal Outpost Made Royal Dye For 500 Years

Archaeologists have uncovered a reeking, violet-stained factory where crushed sea snails once fueled the elite’s obsession with royal purple.

Researchers analyzed 10,000 studies and found cannabis could actually fight cancer

Scientists used AI to scan a huge number of papers and found cannabis gets a vote of confidence from science.

Scientists Found a Way to Turn Falling Rainwater Into Electricity

It looks like plumbing but acts like a battery.

AI Made Up a Science Term — Now It’s in 22 Papers

A mistranslated term and a scanning glitch birthed the bizarre phrase “vegetative electron microscopy”

Elon Musk could soon sell missile defense to the Pentagon like a Netflix subscription

In January, President Donald Trump signed an executive order declaring missile attacks the gravest threat to America. It was the official greenlight for one of the most ambitious military undertakings in recent history: the so-called “Golden Dome.” Now, just months later, Elon Musk’s SpaceX and two of its tech allies—Palantir and Anduril—have emerged as leading […]

She Can Smell Parkinson’s—Now Scientists Are Turning It Into a Skin Swab

A super-smeller's gift could lead to an early, non-invasive Parkinson's test.

This Caddisfly Discovered Microplastics in 1971—and We Just Noticed

Decades before microplastics made headlines, a caddisfly larva was already incorporating synthetic debris into its home.

Have scientists really found signs of alien life on K2-18b?

Extraordinary claims require extraordinary evidence. We're not quite there.

A Forgotten 200-Year-Old Book Bound in a Murderer’s Skin Was Just Found in a Museum Office

It's the ultimate true crime book.