homehome Home chatchat Notifications


Triangulene, a weird and unstable triangular-shaped molecule, synthesized for the first time one atom at a time

This is molecular surgery.

Tibi Puiu
February 13, 2017 @ 9:39 pm

share Share

3D simulation of triangulene. Credit: Nature.

3D simulation of triangulene. Credit: Nature.

For decades, chemists have been trying to synthesize triangulene — a very unstable molecule that resembles a fragment of graphene. Making the hexagonal mesh of carbon and hydrogen atoms has proven almost impossible to do through conventional means which is why IBM researchers working in Zurich, Switzerland, took a radically different approach. They were able to concoct the elusive molecule by individually placing atoms with a needle-like microscopic tip.

Exotic molecules call for exotic measures

In 1950, Czech chemist Erich Clar claimed that a triangle-shaped hydrocarbon molecule could exist in a configuration of six fused circular benzene molecules. The chemist tried to synthesize triangulene in a solution but failed because it was too reactive. Even though the benzene molecules have an even number of atoms and electrons, two electrons are unable to find a pair because of triangulene’s configuration. It acts like a free radical, basically. “As soon as you synthesize it, it will oxidize,” says Niko Pavliček, a member of the IBM team.

Over the intervening decades, countless other chemists have tried to no avail to synthesize triangulene. There is some progress, as some have been able to synthesize triangulene precursors but not the elusive molecule itself.

Leo Gross and colleagues at IBM labs in Zurich realized there was no point in using conventional synthesis, i.e. reacting chemicals to form larger molecules, so they tried something different. They turned to a scanning probe microscope, an instrument typically used to image molecules by measuring the attractive forces between the tip of the probe and the sample. But the same microscope can be used to direct the course of chemical reactions and synthesize unstable intermediate molecules.

The team started with a precursor called dihydrotriangulene, which lacks the reactive unpaired electrons.The precursor molecules were deposited on a surface which was then probed with the electron microscope.The molecule was then blasted with an electron beam to tear off the extra hydrogen, leaving only the triangulene behind. The same versatile microscope was then used to take this incredible shot, as reported in Nature Nanotechnology.

Top: triangulate diagram. Bottom: finally the first synthesis of triangulate , imaged here with amazing atomic resolution. Credit: Nature.

Top: triangulate diagram. Bottom: finally the first synthesis of triangulate , imaged here with amazing atomic resolution. Credit: Nature.

“Triangulene is the first molecule that we’ve made that chemists have tried hard, and failed, to make already,” said Gross.

It’s thought triangulene’s unique electronic arrangement could make it magnetic and a promising material in quantum computing.

 

 

share Share

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

New Type of EV Battery Could Recharge Cars in 15 Minutes

A breakthrough in battery chemistry could finally end electric vehicle range anxiety

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.