homehome Home chatchat Notifications


The World's Smallest Microcontroller Could Reshape the Future of Wearable Tech and Medicine

This speck-sized chip could be incorporated in anything from smart pills to environmental sensors.

Tudor Tarita
March 17, 2025 @ 1:35 pm

share Share

It’s smaller than a pepper grain but don’t let its tiny size fool you. Texas Instruments has unveiled the world’s smallest microcontroller, the MSPM0C1104, measuring a mere 1.38 square millimeters. The microcontroller’s tiny footprint could open doors for a new wave of medical wearables, smart home devices, and even surgical tools that were once deemed impossible.

The MSPM0C1104 microcontroller. Credit: Texas Instruments

A Pepper-Sized Computer

Microcontrollers—small, self-contained computers—are the silent workhorses of modern electronics, embedded in everything from smart thermostats to fitness trackers. Texas Instruments’ latest MCU, part of its Arm Cortex-M0+ series, takes this miniaturization to the extreme. Despite its size, the MSPM0C1104 packs a surprising amount of power, with a 24 MHz processor, 16KB of flash memory, and 1KB of SRAM. It even features a 12-bit analog-to-digital converter for interpreting sensor data in applications like medical monitoring and environmental sensing.

The microcontroller’s tiny size is made possible by wafer-level chip-scale packaging (WLCSP), an advanced manufacturing technique that eliminates the need for traditional packaging, making it 38% smaller than its closest competitor. For engineers designing ultra-compact devices—think smart pills that monitor internal health or next-generation earbuds—this could be a real game-changer.

“With the new TI MCU, we could see a new class of super micro-devices not just targeting consumers but commercial uses,” William Luk told CNET, a consultant at Quandary Peak Research. “One of the important verticals for micro-devices is in healthcare and surgical: smart pills, embedded sensors, or even surgical devices that can reach places like never before.”

Specs for a Speck-Sized Chip

Texas Instruments is positioning this MCU as the perfect fit for battery-powered and space-constrained devices. The MSPM0C1104 operates with impressive efficiency, consuming just 87 microamps per megahertz when active and a mere 5 microamps in standby mode—features that could extend battery life in wearables and medical devices where long battery life is essential.

The device is also built to endure extreme conditions, functioning in temperatures ranging from -40°C to 125°C. Whether inside an industrial sensor in a freezing warehouse or a high-temperature medical probe, it remains operational with potential applications beyond just consumer electronics.

MSPM0C110x functional block diagram
MSPM0C110x functional block diagram. Credit: Texas Instruments

Texas Instruments is making this technology accessible to large manufacturers as well as hobbyists and researchers. The company is offering a LaunchPad development kit for just $5.99.

At just 20 cents per unit in bulk orders, the MSPM0C1104 is remarkably affordable for applications at scale. “This innovation may be enough to move Texas Instruments up the chain of MCU developers currently dominated by STMicroelectronics, Infineon, NXP, Microchip, and Renesas Electronics,” Luk noted.

For years, the race in microelectronics has focused on packing more power into ever-smaller chips. While many advancements have centered on making processors faster and more powerful, Texas Instruments’ microcontroller represents a different kind of approach: focusing on miniaturization foremost and energy efficiency.

There’s a big market for tiny computers. Smart medical implants could monitor patients’ health in real time, sending data wirelessly without invasive procedures. Tiny environmental sensors could be deployed in places previously inaccessible to electronics, monitoring air quality or detecting contaminants in water. Even consumer products, from hearing aids to smart styluses, could become more discreet and efficient.

share Share

These researchers counted the trees in China using lasers

The answer is 142 billion. Plus or minus a few, of course.

If you use ChatGPT a lot, this study has some concerning findings for you

So, umm, AI is not your friend — literally.

The Soviets Built a Jet Powered Train and It Was as Wild as It Sounds

This thing was away of its time and is now building rust in a scrapyard.

New Diagnostic Breakthrough Identifies Bacteria With Almost 100% Precision in Hours, Not Days

A new method identifies deadly pathogens with nearly perfect accuracy in just three hours.

Revenge of the Fish: A Bone Pierced Through Man’s Gut and Stabbed His Liver

A swallowed bone made its way from the gut to the liver, causing weeks of mystery pain

Miyazaki Hates Your Ghibli-fied Photos and They're Probably a Copyright Breach Too

“I strongly feel that this is an insult to life itself,” he said.

This Is Why Human Faces Look So Different From Neanderthals

Your face stops growing in a way that neanderthals' never did.

AI-Assisted Wearable Device 'Speaks' For People With Dysfunctional Vocal Cords

Speech-language pathology is an area of medical science based on the mechanics of voice production and the evaluation, treatment and prevention of communication. AI-assisted technology is now part of treatment options for conditions that affect speech, such as stuttering or the inability to control specific muscles after a stroke.  UCLA bioengineers have created a device […]

Scientists sawed a human brain into 703 cubes to map its energy system for the first time

Your brain burns 20 percent of your body’s energy and now we know exactly where it goes.

This Tamagotchi Vape Dies If You Don’t Keep Puffing

Yes. You read that correctly. The Stupid Hackathon is an event like no other.