If you’ve got good eyesight, you can probably see a person’s general figure from around 300 meters (1000 feet). If you’re really keen, you may even tell some basic features of the face. But if you were using this LiDAR sensor, you could see everything with 1 millimeter precision.
A recent study published in Optica unveils a revolutionary LiDAR (Light Detection and Ranging) system that pushes the limits of high-resolution depth imaging over long distances. Using superconducting nanowire single-photon detectors (SNSPDs), researchers have achieved millimeter-scale resolution at distances up to 1 kilometer — all while using an eye-safe laser.
![](https://cdn.zmescience.com/wp-content/uploads/2025/02/lidars-1024x781.png)
LiDAR (Light Detection and Ranging) is a remote sensing technology that uses laser pulses to measure distances with extreme precision. By emitting laser beams and calculating the time it takes for them to bounce back from surfaces, LiDAR generates high-resolution depth information, even in challenging conditions like low light, fog, or dense vegetation.
This technology isn’t new. It’s widely used in autonomous vehicles to detect obstacles and navigate safely, as well as in aerial scanning for topographical surveys, city planning, and archaeology. It’s even used in space exploration, where NASA uses LiDAR to map planetary surfaces like Mars and the Moon. The new study just made it a bit better.
Advancing LiDAR
![](https://cdn.zmescience.com/wp-content/uploads/2025/02/lidars-2-1024x981.png)
time of 1 ms. Image credits: McCarthy et al (2025).
The new system uses special light detectors that are incredibly sensitive and can detect even a single particle of light (photon) with extreme accuracy. These detectors measure the time it takes for light to bounce back with almost no delay or error, which helps create super sharp and precise 3D images. This makes it possible to see fine details at very long distances, where regular LiDAR systems would normally struggle.
The system is also robust. Despite operating at high power level (up to 3.5 mW), the long 1550 nm wavelength is safe use in open environments, unlike shorter-wavelength LiDARs that pose an eye hazard. It also has an advanced filtering mechanism which enables high-contrast imaging even in bright daylight. All of this, coupled with excellent depth and spatial accuracy, makes it very useful for fine-detail imaging in fields such as forensic analysis, facial recognition, and robotic navigation.
The researchers tested the new LiDAR in mulitple situations. In one, they took 3D images of one scientist’s head from 45 and then 325 meters away. They also mapped Lego figurines from 32 meters and imaged a segment of a communication tower that was a kilometre away. In all tests, the device provided very good, millimeter level accuracy.
What’s next
![](https://cdn.zmescience.com/wp-content/uploads/2025/02/lidars3-1024x510.png)
styrene head, and co-author. Image credits: McCarthy et al (2025).
The team now says they want to develop better ways to process the data.
“The acquired data were post-processed on a pixel-by-pixel basis. Future work will concentrate on using more advanced computational techniques,” the study reads. Future improvements could also include adaptive optics or computational corrections. Over long distances, air turbulence causes scintillation (twinkling effects), which can degrade resolution.
As scientists continue to refine the technology, we can expect even greater breakthroughs in long-range vision, security, and machine perception. The era of ultra-high-resolution LiDAR is just beginning — and its impact will be felt across the globe.
The study was published in the journal Optica.