homehome Home chatchat Notifications


Stunning Fossil of Sword-Tailed Pterosaur Reveals the Evolutionary Secrets of Flying Reptiles

A nearly perfect fossil has been waiting patiently to rewrite the story of flight.

Tibi Puiu
November 19, 2024 @ 5:32 am

share Share

Skiphosoura bridges a key gap in flying reptile evolution.
Artist impression of Skiphosoura bavarica. Credit: Gabriel Ugueto.

In a quarry in southern Germany, encased in limestone, a nearly perfect fossil has been waiting patiently to rewrite the story of flight. The fossil, a pterosaur with a stiff, sword-like tail, is a new species described today in the journal Current Biology.

This remarkable discovery, made by an international team of scientists led by Dr. David Hone of Queen Mary University of London, sheds light on a longstanding mystery about how these enigmatic reptiles evolved into the airborne giants of the Mesozoic era.

Photograph of the original specimen of Skiphosoura bavarica in natural and UV lighting. Credit: René Lauer.

The newly discovered species, named Skiphosoura bavarica, meaning “sword tail from Bavaria,” is a rare find. Measuring around two meters in wingspan — comparable to a golden eagle — the specimen is almost completely intact. Unlike most pterosaurs, which are often found flattened like pressed flowers in rock, this fossil was preserved in three dimensions. “This is an incredible find,” says Dr. Hone. “It really helps us piece together how these amazing flying animals lived and evolved.”

For over two centuries, scientists have struggled over the evolution of pterosaurs. These reptiles, which lived alongside the dinosaurs, fell into two main groups: the early, smaller non-pterodactyloids and the later, larger pterodactyloids. Early pterosaurs had short heads, long tails, and a distinctive fifth toe on their feet. Pterodactyloids, in contrast, boasted long necks, large heads, and reduced tails.

The differences between the two groups could be staggering. In the Late Cretaceous skies, the colossal Quetzalcoatlus northropi soared with wings spanning nearly 40 feet, making it one of the largest flying animals ever to exist. On the other end of the scale was the tiny Nemicolopterus crypticus, with a wingspan of just 10 inches, small enough to fit in the palm of a hand. While Quetzalcoatlus likely hunted from the skies like a prehistoric bomber, snatching up small prey, its sparrow-sized cousin likely darted through dense foliage, feasting on insects.

But pinpointing when and how these changes occurred has remained a mystery.

A Step Forward in Understanding the Evolution of Flight

The fossil of Skiphosoura provides a crucial piece of this evolutionary puzzle. In the 2010s, researchers discovered a group of intermediate species called darwinopterans, which showed that the head and neck evolved first. However, these fossils left other questions unanswered. Now, with Skiphosoura, scientists have found a link bridging the gap between these intermediate forms and the later, larger pterodactyloids.

Dr. Hone and his team’s analysis shows that Skiphosoura sits evolutionarily between the darwinopterans and the pterodactyloids. While it has a head and neck more typical of the larger pterodactyloids, it retains features like a slightly longer wrist and a shorter toe, suggesting a gradual evolutionary shift.

“Pterosaurs have long been symbols of the unique life of the past. Skiphosoura represents an important new form for working out pterosaur evolutionary relationships and, by extension, how this lineage arose and changed,” said Adam Fitch of the University of Wisconsin-Madison.

By reconstructing the pterosaur family tree, the team could place the recently discovered Dearc, a Scottish pterosaur, as another crucial link. Together, these fossils form a nearly complete evolutionary timeline: from early pterosaurs, to Dearc, to darwinopterans, and finally to Skiphosoura and the giant pterodactyloids.

Evolution of pterodactyloid pterosaurs. Credit: Skye McDavid.

Unlocking the Secrets of Stone

Uncovering this fossil was no small feat. René Lauer of the Lauer Foundation recounts the painstaking process. “The specimen was disarticulated with bones of varying quality often overlaid upon one another. Digital photography taken in both visible and UV light significantly aided in identifying these elements and analyzing finer details.”

Stefan Selzer, a preparator who has worked on over 60 pterosaur specimens, noted how this one stood out. “I recognized during the final prep that this specimen showed features combining characteristics of both major groups of pterosaurs,” he says, with the shortened tail serving as a defining feature.

While Skiphosoura‘s discovery answers many questions, it also opens new avenues of research. Scientists are now left wondering what other transitional species might still be hidden in the limestone quarries of Germany and elsewhere.

As Bruce Lauer of the Lauer Foundation puts it, “We are proud to bring this important specimen to science and further the understanding of pterosaur evolution.”

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

America’s Favorite Christmas Cookies in 2024: A State-by-State Map

Christmas cookie preferences are anything but predictable.

The 2,500-Year-Old Gut Remedy That Science Just Rediscovered

A forgotten ancient clay called Lemnian Earth, combined with a fungus, shows powerful antibacterial effects and promotes gut health in mice.

Should we treat Mars as a space archaeology museum? This researcher believes so

Mars isn’t just a cold, barren rock. Anthropologists argue that the tracks of rovers and broken probes are archaeological treasures.

Hidden for Centuries, the World’s Largest Coral Colony Was Mistaken for a Shipwreck

This massive coral oasis offers a rare glimmer of hope.

This Supermassive Black Hole Shot Out a Jet of Energy Unlike Anything We've Seen Before

A gamma-ray flare from a black hole 6.5 billion times the Sun’s mass leaves scientists stunned.

Scientists Say Antimatter Rockets Could Get Us to the Stars Within a Lifetime — Here’s the Catch

The most explosive fuel in the universe could power humanity’s first starship.

Superflares on Sun-Like Stars Are Much More Common Than We Thought

Sun-like stars release massive quantities of radiation into space more often than previously believed.

This Wild Quasiparticle Switches Between Having Mass and Being Massless. It All Depends on the Direction It Travels

Scientists have stumbled upon the semi-Dirac fermion, first predicted 16 years ago.

New Study Suggests GPT Can Outsmart Most Exams, But It Has a Weakness

Professors should probably start changing how they evaluate students.