homehome Home chatchat Notifications


Stretchable electronics could be as 'multipurpose as your phone'

A new approach in how we can work with electronics.

Mihai Andrei
August 21, 2018 @ 4:02 pm

share Share

A group of researchers managed to stack and connect layers of electronics on top of each other to essentially build 3D stretchable electronics that can serve complex and diverse functions while remaining low in size.

The proof of concept, compared to a US dollar coin. Image credits: Zhenlong Huang / University of California San Diego.

Smart everything

Few things have revolutionized our world like electronics. In our pockets, we carry smartphones — devices which not only allow us to call essentially anyone in the world but also to access all the world’s knowledge and content at the click of a button; they’re good for playing silly games, too. But phones aren’t the only things getting smart. We have smart cars, smart homes, and even smart clothes — all thanks to the ever-advancing electronics.

But there are limits. Building 3D electronics that are small enough and able to carry out complex functions has proven very challenging.

“Our vision is to make 3D stretchable electronics that are as multifunctional and high-performing as today’s rigid electronics,” said senior author Sheng Xu, a professor in the Department of NanoEngineering and the Center for Wearable Sensors at the UC San Diego Jacobs School of Engineering.

The new technology can have far-reaching implications. For instance, consider smart sensors — a stretchable electronic bandage could be used to monitor patient’s body functions such as respiration, body motion, temperature, eye movement, heart and brain activity. Xu and colleagues built a prototype, which can do all this and control a robotic arm.

“Rigid electronics can offer a lot of functionality on a small footprint–they can easily be manufactured with as many as 50 layers of circuits that are all intricately connected, with a lot of chips and components packed densely inside. Our goal is to achieve that with stretchable electronics,” said Xu.

The new device consists of four layers of interconnected, stretchable, flexible circuit boards, featuring so-called “island-bridge” design. The “island” is a small, rigid electronic part (sensor, antenna, Bluetooth chip, amplifier, accelerometer, resistor, capacitor, inductor, etc.), while the “bridge” is made of thin copper wires which allow the circuits to twist and bend without losing functionality.

Researchers say they don’t have a specific purpose in mind, but the potential applications are limitless — wherever flexible circuits and electronics are necessary, the new technology could do wonders.

“We didn’t have a specific end use for all these functions combined together, but the point is that we can integrate all these different sensing capabilities on the same small bandage,” added co-first author Zhenlong Huang, a visiting Ph.D. student in Xu’s research group.

The new device has been shown to function for six months without losing any of its functionality or power. The team is now working with to improve and finesse the technology. Hopefully, it won’t be long before the technology is tested in a clinical setting.

The study has been published in Nature Electronics.

share Share

Researchers Turn 'Moon Dust' Into Solar Panels That Could Power Future Space Cities

"Moonglass" could one day keep the lights on.

Ford Pinto used to be the classic example of a dangerous car. The Cybertruck is worse

Is the Cybertruck bound to be worse than the infamous Pinto?

Archaeologists Find Neanderthal Stone Tool Technology in China

A surprising cache of stone tools unearthed in China closely resembles Neanderthal tech from Ice Age Europe.

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.