homehome Home chatchat Notifications


Space radiation might cause bone loss in astronauts

Radiation amplifies the bone loss incurred from weightlessness.

Tibi Puiu
December 18, 2017 @ 7:09 pm

share Share

Astronauts living aboard the International Space Station may experience bone and muscle loss due to the combined effects of microgravity and radiation, scientists report. The findings have important implications for how NASA engineers plan on mitigating the effects of radiation for upcoming deep-space missions such as a manned trip to Mars.

nasa

Credit: Pixabay.

Like muscles, bone is a dynamic tissue which adapts to demand. If there’s frequently increased load, bones will grow bigger to meet this demand. In a weightless environment, however, muscles will atrophy and bones will lose density. What’s more, radiation also seems to play a role in bone density loss but not in muscle atrophy, a recent study funded by NASA informs.

Researchers led by Henry Donahue from Virginia Commonwealth University studied mice whose movements were restricted, thereby simulating microgravity. Another group of mice were left to roam freely while being exposed to radiation of the kind experienced in space.

While the microgravity conditions led to both muscle and bone loss, radiation alone could only produce bone loss.

“Radiation plus microgravity amplifies the negative effect of microgravity on bone, but does not affect muscle loss,” Donahue said in a statement. “It’s as if exposure to radiation itself doesn’t affect bone, but it makes it more sensitive to the negative effects of microgravity.”

Donahue says that loss of bone and muscle experienced by astronauts is similar to what doctors see in aging people. Older people, he said, “fall more, they break their bones more.” In the future, understanding how microgravity impacts human biology might reveal important insight regarding the effects aging has on muscle and bone.

Sadly, this is more bad news for manned space flight. Previously, scientists at the University of California, Irvine, found mice exposed to space radiation experienced cognitive decline, accompanied by changes in the structure and integrity of brain nerve cells and the synapses.

Charles Limoli, a scientist at the University of California, Irvine, previously found similar kinds of brain damage in cancer patients who had received high-dose, photon-based radiation treatments. The oncologist says that astronauts would require months and months worth of exposure to deep space radiation for brain damage to occur. Considering the shortest one-way trip to Mars lasts 260 days, that’s cause for worry.

“Exposure to these particles can lead to a range of potential central nervous system complications that can occur during and persist long after actual space travel – such as various performance decrements, memory deficits, anxiety, depression and impaired decision-making,” said Limoli.

Astronaut performs kneeling lift with ARED device. Credit: NASA.

Astronaut performs kneeling lift with ARED device. Credit: NASA.

No escaping radiation

Now, we know that radiation will also incur an additional bone loss in astronauts. Deep space radiation is an unsolved problem, as no amount of shielding can block off highly energetic space rays from penetrating a spaceship.

The effects of weightlessness are also problematic. Besides incurring significant muscle and bone loss after only a couple of weeks spent in space, microgravity also impairs vision by literally deforming the eyeball. Other, more subtle effects, include genes that turn on and off (with unclear consequences at this point) and longer telomeres (which slow down chromosome deterioration).

To counter the bone and muscle loss, since 2008, astronauts aboard the ISS have been using the Advanced Resistive Exercise Device (ARED), which allows them to simulate free-weight exercises in normal gravity. Each astronaut has an allocated exercise time of two hours a day in space. But despite exercise, it still takes months of rehabilitation to adjust when returning to Earth after a typical six-month space mission.

Scientific reference: Andrew R. Krause et al. Simulated space radiation sensitizes bone but not muscle to the catabolic effects of mechanical unloading, PLOS ONE (2017). DOI: 10.1371/journal.pone.0182403. 

share Share

Evolution just keeps creating the same deep-ocean mutation

Creatures at the bottom of the ocean evolve the same mutation — and carry the scars of human pollution

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.

These researchers counted the trees in China using lasers

The answer is 142 billion. Plus or minus a few, of course.

New Diagnostic Breakthrough Identifies Bacteria With Almost 100% Precision in Hours, Not Days

A new method identifies deadly pathogens with nearly perfect accuracy in just three hours.

This Tamagotchi Vape Dies If You Don’t Keep Puffing

Yes. You read that correctly. The Stupid Hackathon is an event like no other.

Wild Chimps Build Flexible Tools with Impressive Engineering Skills

Chimpanzees select and engineer tools with surprising mechanical precision to extract termites.

Archaeologists in Egypt discovered a 3,600-Year-Old pharaoh. But we have no idea who he is

An ancient royal tomb deep beneath the Egyptian desert reveals more questions than answers.

Researchers create a new type of "time crystal" inside a diamond

“It’s an entirely new phase of matter.”

Strong Arguments Matter More Than Grammar in English Essays as a Second Language

Grammar takes a backseat to argumentation, a new study from Japan suggests.