homehome Home chatchat Notifications


This small, cheap, and extremely accurate gyroscope could revolutionize navigating

This device could help keep cars on track even without using a GPS.

Mihai Andrei
October 11, 2021 @ 11:11 am

share Share

This small device could make phone and autonomous car localization way much more accurate.

The new resonator and electrodes, on a quarter for scale. The resonator is almost perfectly symmetrical, made of nearly-pure glass. This enables it to vibrate for long periods, similar to the ringing of a wine glass. Image credits: Najafi Group, University of Michigan.

When you use Google Maps (or any other mapping service), it’s not just showing you the route to take — it’s also showing the direction you’re pointing your phone at. Most smart devices, from phones to modern cars, have some type of gyroscope inside them that allows them to do this, helping the device (and the user) know the direction it’s facing. But these gyroscopes are pretty bad quality. If you’d follow the gyroscope alone, you’d get lost in no time.

This is why most devices are so reliant on GPS, but GPS accuracy is also reduced to a couple of meters. So if we want to improve how geographical tracking in these devices, the gyroscope is a good place to start.

“High-performance gyroscopes are a bottleneck, and they have been for a long time. This gyroscope can remove this bottleneck by enabling the use of high-precision and low-cost inertial navigation in most autonomous vehicles,” said Jae Yoong Cho, an assistant research scientist in electrical engineering and computer science.

The device that enables navigation without a consistent orienting signal is called an inertial measurement unit. The unit is made up of three accelerometers and three gyroscopes, one for each axis in space — X, Y, and Z. The key to making a small and cheap gyroscope is an almost-symmetrical mechanical resonator. The quality of the resonator depends on the quality of the material.

The problem is that using better materials is prohibitively expensive. In a new study, researchers presented a new way to make extremely accurate gyroscopes, while keeping prices low at the same time.

“Our gyroscope is 10,000 times more accurate but only 10 times more expensive than gyroscopes used in your typical cell phones. This gyroscope is 1,000 times less expensive than much larger gyroscopes with similar performance,” said Khalil Najafi, the Schlumberger Professor of Engineering at U-M and a professor of electrical engineering and computer science.

Najafi’s team built a resonator from nearly perfect sheets of pure glass called fused silica — only a quarter of a millimeter thick, so researchers had to use a special blowtorch to heat it up and then melt it into the desired shape.

“Basically, the glass resonator vibrates in a certain pattern. If you suddenly rotate it, the vibrating pattern wants to stay in its original orientation. So, by monitoring the vibration pattern it is possible to directly measure rotation rate and angle,” said Sajal Singh, a doctoral student and co-author.

It remains to be seen how cheaply this chip can be made and how long it will take to implement it into other technology.

share Share

Local governments are using AI without clear rules or policies, and the public has no idea

In 2017, the city of Rotterdam in the Netherlands deployed an artificial intelligence (AI) system to determine how likely welfare recipients were to commit fraud. After analysing the data, the system developed biases: it flagged as “high risk” people who identified as female, young, with kids, and of low proficiency in the Dutch language. The […]

The 12 Smartest Dinosaurs: The Top Brainy Beasts of the Mesozoic

A rundown of some of the most interesting high-IQ dinos.

These Revolutionary Maps Are Revealing Earth's Geological Secrets

This work paves the way for more precise and comprehensive geological models

These Cockatoos Prepare Their Food by Dunking it Into Water

Just like some of us enjoy rusk dipped in coffee or tea, intelligent cockatoos delight in eating rusk dipped in water.

Microplastics Discovered in Human Brain Tissue: What Are The Health Risks?

From the air we breathe to the water we drink, microplastics infiltrate every corner of our lives—but what happens when they cross into our brains?

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

New tools enable companies to improve the sustainability of their products

There’s no shortage of environmental crises. Whether it’s climate change, plastic pollution, or simply our mounting waste, we just produce too much stuff — and then throw it away. There’s no silver bullet or magic tool that can solve everything. We need societal changes, better regulation, and more responsible companies. In a new study, a […]

America’s Favorite Christmas Cookies in 2024: A State-by-State Map

Christmas cookie preferences are anything but predictable.

The 2,500-Year-Old Gut Remedy That Science Just Rediscovered

A forgotten ancient clay called Lemnian Earth, combined with a fungus, shows powerful antibacterial effects and promotes gut health in mice.

Should we treat Mars as a space archaeology museum? This researcher believes so

Mars isn’t just a cold, barren rock. Anthropologists argue that the tracks of rovers and broken probes are archaeological treasures.