homehome Home chatchat Notifications


Seminal fluid blinds honeybee queens so they're less likely to mate with other males

A perfect example of a sexual arms race in the animal kingdom.

Tibi Puiu
September 11, 2019 @ 7:43 pm

share Share

Carniolan Queen Bee in the hive. Credit: Wikimedia Commons.

In many social species, the reproductive strategies of males and females are so different that they often cross the barrier into conflict. Take honeybees, for instance. A new study found that inseminated honeybee queens can become visually impaired, thereby reducing their chances of mating with other males.

The sexual arms race

Males often employ strategies that increase their fertilization success whereas females tend to want the best genes for their offspring. Honeybee queens have a short of a period of time during their early lives when they fly out of their hives to mate with as many males as they can in order to enhance genetic diversity, thus improving hive health.

After her first flight, a queen may embark in subsequent flights out of the hive to find more males. For males which already mated with the queen, this behavior is against their agenda of passing down their own genes to offspring. So, to null the competition, the males have developed a biological trick to offer them a sexual advantage.

Previous observations have suggested that insemination alters the activity of genes connected to vision in the queen’s brain. In a new study, researchers at the University of Copenhagen in Denmark and the University of Western Australia sought to verify this hypothesis.

The study showed that, indeed, seminal fluid can trigger changes in the activity of vision-related genes in honeybee queens. In experiments, queens that were inseminated with seminal fluid were less responsive to light whereas, queens that were exposed to an inert saline solution could sense the stimulus. What’s more, tracking devices mounted on inseminated queens showed that the insects left for mating flights sooner but were also more likely to get lost and not return to their hives.

The findings, which were published in the journal eLife, show that males have developed this tactic in order to reduce a queen’s possibility to complete more mating runs. But the queens haven’t stood idle. To counter the debilitating effects of male sperm, the queens leave for mating flights sooner, which increases their chances of finding more mates and increase the genetic diversity of their colonies.

In the future, the researchers plan on conducting more studies that might determine whether this ‘arms race’ is affected by seasons, bee race, and geography. Beyond unraveling a fascinating fascet of mating in the animal kingdom, the findings could also find practical use. The information could be exploited by beekeepers whose business depend on queen mating success and hive health.

This is just an example out of numerous instances of male adaptions to sperm competition that gives rise to sexual conflict — i.e. traits that increase the fitness of one sex while reducing the fitness of the other. Male cockroaches that have become sperm depleted will guard females to enforce monogamy.

Other species employ strategies that involve blocking the female genital tract with a copulatory plug — there is evidence for this in rodents, in which a number of different ejaculatory proteins form the plug. And another way for males to maximize fitness returns when faced with the risk of sperm competition is to simply ‘care less’. Such males will either not mate with or allocate fewer resources to already mated females. If males allocate fewer resources (i.e., fewer sperm or smaller ejaculates), or are less willing to mate with nonvirgin females, this could reduce female fertility. 

share Share

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.

This Freshwater Fish Can Live Over 120 Years and Shows No Signs of Aging. But It Has a Problem

An ancient freshwater species may be quietly facing a silent collapse.

These researchers counted the trees in China using lasers

The answer is 142 billion. Plus or minus a few, of course.

New Diagnostic Breakthrough Identifies Bacteria With Almost 100% Precision in Hours, Not Days

A new method identifies deadly pathogens with nearly perfect accuracy in just three hours.

This Tamagotchi Vape Dies If You Don’t Keep Puffing

Yes. You read that correctly. The Stupid Hackathon is an event like no other.

Wild Chimps Build Flexible Tools with Impressive Engineering Skills

Chimpanzees select and engineer tools with surprising mechanical precision to extract termites.

Archaeologists in Egypt discovered a 3,600-Year-Old pharaoh. But we have no idea who he is

An ancient royal tomb deep beneath the Egyptian desert reveals more questions than answers.

Sharks Aren’t Silent After All. This One Clicks Like a Castanet

This is the first evidence of sound production in a shark.

Researchers create a new type of "time crystal" inside a diamond

“It’s an entirely new phase of matter.”

Strong Arguments Matter More Than Grammar in English Essays as a Second Language

Grammar takes a backseat to argumentation, a new study from Japan suggests.