homehome Home chatchat Notifications


Scientists restore organ function in pigs even hours after death

The technology could dramatically improve the lifespan of precious organs meant for transplantation.

Tibi Puiu
August 4, 2022 @ 7:53 pm

share Share

OrganEx revives organ function using a special fluid that allows blood to circulate through the dead bodies of pigs. Credit: Yale University.

During death, the entire body’s activity grinds to a halt. The heart no longer beats, breathing stops, and electrical activity in the brain is quiet. Within just a few minutes after we reach the absolute end of the line, the body starts to self-decompose through a process called autolysis, or self-digestion. But this process doesn’t necessarily have to happen that quickly.

In a massive breakthrough, researchers at Yale University have devised a cell-protective fluid that restores blood circulation and other vital cellular functions to the organs and tissues of deceased pigs, even hours after their deaths.

The same technology could be applied to human organs in order to preserve and expand their availability for use as donor organs, which are always in short supply across the world.

“All cells do not die immediately, there is a more protracted series of events,” said David Andrijevic, an associate research scientist in neuroscience at Yale School of Medicine and co-lead author of the study. “It is a process in which you can intervene, stop, and restore some cellular function.”

Keeping organ death at bay

In 2019, the same Yale researchers made headlines earlier after they were able to revive a pig’s brain following death, restoring circulation and certain cellular functions using a technology they dubbed BrainEx. If they could restore cellular function to the dead brain, which is the most vulnerable to degradation after the blood supply is cut, the researchers naturally thought they should be able to do the same for other vital transplantable organs. And it worked.

Applying a modified version of BrainEx, called OrganEx, to the whole body of dead pigs, the researchers found that many key cellular functions were still active in the heart, liver, and kidneys even six hours after treatment. For instance, the heart still had electrical activity, meaning it retained the ability to contract and pump blood. The technology involves a device that resembles heart-lung machines, which pump blood and air for a patient during surgery instead of their body’s organs, as well as a special fluid that contains chemicals that promote cellular health, suppress blood clotting and inflammation, and prevent cellular death.

“We were also able to restore circulation throughout the body, which amazed us,” said Nenad Sestan, professor of neuroscience at Yale and coordinator of the project.

The researchers applied OrganEx to six dead female pigs, whose bodies were left alone for an entire hour after death. After the hour had passed, the researchers hooked the dead pigs up to the fluid-circulating machine and pumped their bodies with the special liquid for six hours. The researchers weren’t allowed to keep the pigs hooked up to the machines any longer due to ethical considerations.

Even after all this time, the heart, lungs, liver, and kidneys were still intact and their cells weren’t dying. Many cells were actually burning glucose, which shows they were still metabolically active. Genes involved in DNA repair and metabolism were active, whereas those involved in death and tissue trauma were suppressed.

“Under the microscope, it was difficult to tell the difference between a healthy organ and one which had been treated with OrganEx technology after death,” Yale’s Zvonimir Vrselja said.

The are numerous ways this technology could touch our lives — and, dare I say, even save our lives. It could, for instance, extend the shelf life of harvested human organs meant for transplantation. Currently, livers survive no more than 12 hours outside the body, while hearts and lungs only last 6 hours tops. Additionally, the technology could prove useful in treating organs or tissues damaged by poor blood flow following a heart attack or stroke.

The findings were reported in the journal Nature.

share Share

Experts Say Autism Surge Is Driven By Better Screening. RFK Jr Desperately Wants It To Be Something Else

RFK Jr just declared war on decades of autism research—armed with no data, a debunked myth, and a deadline.

Could This Saliva Test Catch Deadly Prostate Cancer Early?

Researchers say new genetic test detects aggressive cancers that PSA and MRIs often miss

This Futuristic Laser Blood Test May Be the Key to Beating Cancer Early

Researchers use light pulses and AI to detect lung cancer with 81% accuracy

Weirdest Planetary System Ever? Meet the Planet That Spins Perpendicular to Its Stars

Forget neat planetary orbits — this newly discovered exoplanet circles two brown dwarfs at a right angle.

This living fungus-based building material can repair itself over a month

It's not ready to replace cement just yet, but it's really promising.

​A ‘Google maps for the sea’, sails ​and alternative fuels: ​the technologies steering shipping towards ​lower emissions

 Ships transport around 80% of the world’s cargo. From your food, to your car to your phone, chances are it got to you by sea. The vast majority of the world’s container ships burn fossil fuels, which is why 3% of global emissions come from shipping – slightly more than the 2.5% of emissions from […]

This Tokyo Lab Built a Machine That Grows Real Chicken Meat

A lab in Tokyo just grew a piece of chicken that not only looks like the real thing — it tastes like it too.

Why the Right Way To Fly a Rhino Is Upside Down

Black rhinos are dangling from helicopters—because it's what’s best for them.

This Tree Survives Lightning Strikes—and Uses Them to Kill Its Rivals

This rainforest giant thrives when its rivals burn

This Test Could Catch Heart Trouble Years Before It Strikes For Under $7

A cheap blood test can detect silent heart damage before a heart attack or stroke