homehome Home chatchat Notifications


Scientists find the speed limit of computer chips: one million gigahertz

There's still a lot of room to improve data transmission speeds.

Tibi Puiu
March 28, 2022 @ 4:11 pm

share Share

Credit: Pixabay.

The fastest signal transmission theoretically possible by microchips is one petahertz, or one million gigahertz. To put it into perspective, that’s 100,000 times faster than today’s most advanced transistors. That’s good news for Moore’s Law, suggesting there’s still much room for progress in the future although it’s not clear if this speed limit can actually ever be reached.

What the fastest microchips might look like a century from now

Microelectronics engineers usually have two main design pathways they can take to make computers process information faster. One is making transistors as small as possible and cramming them into an integrated circuit. The advantage this brings is that the distance between the transistor is minimal so the electrical signal shuttled to and fro takes the least time to complete. Theoretically, you can miniaturize transistors until you reach the size of an atom. An integrated circuit cannot be physically smaller than this.

The other approach is speeding up the switching signals of the transistors. A transistor is a semiconductor device that can open or close a circuit, similar to how a nozzle regulates the water flow from pumps. Switching between open and closed states allows the transistor to transmit digital information, and the faster the switching frequency the better.

“The faster you want to go, the more high frequency the electromagnetic signal has to be – and at some point we come into the range of the frequency of light, which can also be considered or used as an electromagnetic signal,” explained Martin Schultze, the lead author of the new study and head of the Institute of Experimental Physics at the Graz University of Technology in Austria.

Using high-frequency light to achieve faster data transmission comes with its own challenges, though. When light hits a semiconductor material, the photons’ energy excites electrons from the valence band (where electrons normally reside), temporarily changing the material’s state from an insulator to a conductor. However, the excitation energy threshold of most semiconductors needed to achieve this effect is impractically low.

This limitation can be overcome by using dielectric materials, such as glass or ceramics, which require much more energy to be excited compared to semiconductors. More energy is better because more light energy implies faster data transmission. The only problem is that dielectric materials are usually brittle and break when an electromagnetic field is applied.

For their experiment, the researchers from Graz used lithium fluoride, a special kind of dielectric material that has the largest bandgap of all known materials — this is the distance between the valence band and the conduction band. The material was subjected to an ultra-short laser pulse with ultraviolet frequencies. The high energy from the laser briefly turned the lithium fluoride into an electrical conductor.

By analyzing the measurements of the laser pulses, the researchers concluded how long one has to wait until the material can be exposed to the next signal — basically, its maximum switching speed. This is how they learned that one petahertz is the absolute upper limit for an optoelectronic controlled transistor, although the physicists themselves aren’t sure that technology will ever come close to this limit for practical applications.

The findings appeared in the journal Nature Communications.

share Share

Scientists uncover how your brain flushes out waste during sleep

Scientists uncover a pulsating system that flushes out brain waste during non-REM sleep.

Woman's nut allergy triggered after sex in bizarre first

She was allergic to Brazil nuts, but it wasn’t any she ate that sent her to the hospital.

Weekend warriors, rejoice: working out once in a while is also good for your brain

It seems that even exercise just on the weekend still has significant cognitive benefits.

Can Your Voice Reveal Diabetes? This New AI Thinks So

Researchers have developed a voice-based AI tool that can detect Type 2 diabetes with surprising accuracy.

Archaeologists uncover 1,300-year-old throne room in Peru linked to powerful female ruler

Recently studied murals suggest a powerful female leader once ruled the Moche.

Breakdancer develops one-inch lump on his scalp after 20 years of headspins

Surgeons removed the man's "breakdance bulge" and the patient is now okay.

Scientists Use Math to Show New Type of Particles Once Considered Impossible Might Be Real

Researchers uncover new particle behaviors that break the two-type mold of quantum mechanics.

Hobbyist Builds AI-Assisted Rifle Robot Using ChatGPT: "We're under attack from the front left and front right. Respond accordingly"

The viral video sparked ethical debates about the broader implications of AI weapons.

Drones Helps Researchers Uncover a Lost Mega-Fortress in Georgia

Researchers have long known about the formidable scale of the Dmanisis Gora fortress, but a recent study has unveiled its true magnitude. Using drone-based imagery and photogrammetry, a team of scientists has revealed that this 3,000-year-old structure in the Caucasus Mountains spans an astonishing 60 to 80 hectares. A cultural crossroads The South Caucasus is […]

James Webb Telescope Uses Cosmic "Magnifying glass" to Detect Stars 6.5 Billion Light-Years Away

The research group observed a galaxy nearly 6.5 billion light-years from Earth; when the universe was half its current age.