homehome Home chatchat Notifications


This Tiny Robot Swims Like a Worm — and Could Explore Alien Oceans

Marine flatworms have perfected smooth, undulating motion over millions of years of evolution. Now, scientists have taken inspiration to create a highly agile robot.

Mihai Andrei
February 25, 2025 @ 5:57 pm

share Share

Marine flatworms are cool. Hear me out. They’ve mastered the art of smooth undulating motion and perfected it over millions of years of evolution. They can glide efficiently through water by undulating their thin, flat bodies in an almost ethereal way. Our best robots are nowhere near that performance — but they’re making progress.

Inspired by these natural swimmers, scientists at the École Polytechnique Fédérale de Lausanne (EPFL) have designed a highly agile, untethered robotic swimmer that mimics their movements. This centimeter-scale, soft-bodied robot could be used in environmental monitoring, aquaculture, and maybe even for exploring alien worlds.

Inspiration From Nature

Swimming robots aren’t a novelty. They’re already used to map pollution, monitor water quality, and study aquatic ecosystems like corals and lakes. But these devices typically use noisy propellers that are disturbing to wildlife, and they’re not very efficient either. Such robots are bulky and find it hard to maneuver around the natural chaos in these environments (like plants, animals, or debris).

That’s why robot researchers have long aimed to mimic the efficiency of nature, particularly in aquatic environments. The new robot, which basically looks like a PCB board with wings, ranges from 25 mm to 45 mm in length. And it’s a game-changer. It achieves high-speed movement both in tethered (12 cm/s) and untethered (5.1 cm/s) modes, demonstrating unmatched agility in its size category.

swimming robot in water
A miniature swimming robot inspired by marine flatworms. Image credits: EPFL-LMTS

Unlike many previous designs, which relied on miniature DC electrical motors or hydrogels, this robot integrates soft electrohydraulic actuators. These are flexible, capacitive devices that use an applied electric field to create Maxwell stress, causing the electrodes to zip together and displace a liquid dielectric, resulting in controlled bending or undulating motion. These actuators provide a powerful yet lightweight propulsion system. They consume less than 35 mW of power and function for over 750,000 cycles before showing signs of wear.

“In 2020, our team demonstrated autonomous insect-scale crawling robots, but making untethered ultra-thin robots for aquatic environments is a whole new challenge,” says EPFL Soft Transducers Lab head Herbert Shea. We had to start from scratch, developing more powerful soft actuators, new undulating locomotion strategies, and compact high-voltage electronics.

Biomimicry and Beyond

Nature has already solved many of the engineering problems associated with aquatic locomotion. The EPFL researchers took inspiration from polyclads (marine flatworms), which use continuous undulations to glide effortlessly through water. Their robot replicates this movement by generating over 1.5 wavelengths along its fins, making it more stable and efficient than most artificial undulatory swimmers.

But the key innovation comes from geometry more than physics.

a pink-black marine worm that the swimming robot mimics
A marine flatworm, Pseudobiceros gloriosus. Image via Wiki Commons.

The robot’s flat structure is what makes all the difference. Measuring only 500 micrometers thick, it floats on the water surface due to surface tension, allowing it to carry additional weight with the aid of buoyant elements. The use of soft electrohydraulic actuators enables independent control of each fin, facilitating precise directional movement — a crucial advantage for applications requiring complex navigation.

The design doesn’t stop at imitating nature, however. The robot can flap its fins ten times faster than fish, achieving better directional control.

“Our design doesn’t simply replicate nature; it goes beyond what natural organisms can achieve,” explains former EPFL researcher Florian Hartmann, now a research group leader at the Max Planck Institute for Intelligent Systems in Stuttgart, Germany.

A miniature swimming robot inspired by marine flatworms. Credit: EPFL-LMTS

Real-World Applications

These robots could essentially function like underwater drones, whether to detect pollutants, microplastics, or harmful algal blooms, or to study aquatic life with minimal disturbance.

As researchers refine this technology, we may soon see swarms of these miniature robots autonomously patrolling lakes, rivers, and oceans, collecting data, and assisting in environmental preservation efforts.

Although the researchers don’t mention this directly, we could even see this type of technology deployed on other worlds. Both Enceladus (a moon of Saturn) and Europa (a moon of Jupiter) are believed to harbor vast subsurface oceans beneath their thick ice crusts. These saltwater oceans, kept liquid by gravitational forces that generate heat, are among the most promising places in the solar system to look for extraterrestrial life, but we’d need some technology to explore them. Perhaps, something that moves like a worm.

The study was published in Science Robotics.

share Share

RFK Jr loves raw milk. Now, he's suspending milk quality tests due to Trump cuts

Imagine pouring a glass of milk for your child and wondering if it’s safe.

A Roman gladiator died fighting a lion in England and his 1,800-year-old skeleton proves it

It's the first-ever evidence of man-lion combat found in the Roman period.

This Surprising Protein Shift Could Add Years to Your Life, Study Finds

A global study ties plant protein to longer adult lives, but early life needs differ.

Scientists Create a 'Power Bar' for Bees to Replace Pollen and Keep Colonies Alive Without Flowers

Researchers unveil a man-made “Power Bar” that could replace pollen for stressed honey bee colonies.

First-Ever Footage Captures a Living Colossal Squid—And It’s Just a Baby

A century after its discovery, the elusive giant finally reveals itself on camera.

Ancient tree rings reveal the hidden reason Rome’s grip on Britain failed

Three scorching summers in antiquity triggered revolt, invasion, and a turning point in British history.

Oxford Academics Used a Human Skull as a Wine Cup—Until 2015

It sounds like a scene from gothic fiction, but it’s real.

This Planet Is So Close to Its Star It Is Literally Falling Apart, Leaving a Comet-like Tail of Dust in Space

This dying planet sheds a “Mount Everest” of rock each day.

Scientists Just Found the Clearest Evidence Yet That Lucid Dreaming Is a Real State of Consciousness

People who are aware they are dreaming show distinct brain patterns.

Drug Regenerates Retina and Restores Vision in Blind Mice

A protein hidden in our eyes may be the reason we can't repair lost vison.