homehome Home chatchat Notifications


Scientists use tiny molecular robots to transport cargo for the first time

Japanese scientists created a robot army that contains DNA. These fascinating molecular robots soon might get brains too.

Rupendra Brahambhatt
April 21, 2022 @ 1:02 am

share Share

Swarm robotics is a budding field concerned with the use of multiple autonomous robots for performing a particular function. For the first time, a group of scientists at Hokkaido University, Japan, have demonstrated that a swarm of molecular robots can be used to deliver cargo, showing that molecular-sized robots can collaborate to complete a task. 

Image credits: Javier Miranda/Unsplash

Strength in numbers

The demonstration marks a landmark moment in the field, as the molecular robots developed by the team of researchers in Japan are claimed as the world’s first working micro-sized machines capable of swarming together. Some five million robotic units were constructed by the researchers, and together, the robots successfully transported polystyrene beads having diameters as large as 30 micrometers.

A single unit could only carry beads of sizes up to three micrometers, but with the robots working together, they can achieve much more — which is why researchers are so interested in developing these collaborative swarms of molecular robots.

A molecular robot is essentially a system that converts energy obtained from an external source (such as light, electricity, or a chemical) into motion. The molecular robots constructed by scientists at Hokkaido University are basically biological molecular machines.

Professor Akira Kakugo, who led the demonstration alongside Dr. Mousumi Akter, told ZME Science that a molecular robot is an integrated system “formed through the combination of different molecular parts or devices that may work as actuators, processors, and sensors.” In this case, the actuator that propels the robots is kinesin (a protein), DNA is the compressor, and an organic photoactive molecule (azobenzene) acts as a sensor.

In the presence of visible light, azobenzene directs the DNA to form double strands and initiates swarm formation with the microtubules (exposure to UV light can dissociate the swarm). Meanwhile, Kinesin motors transport the microtubules. 

While explaining the swarm formation, Professor Kakugo emphasized the role that DNA plays in the system:

“DNA plays one of the main roles as the swarming of these molecular robots was realized by utilizing the molecular recognition ability of the DNAs in controlling their local interactions.” 

The researchers compared the transport distance and transport volume covered by a single robot and the swarm separately and found out that the efficiency of swarms was five times greater than that of the single molecular unit.

Schematic illustrations of cargo transport by a swarm of molecular robots (top) and fluorescence images of a molecular robot transporting blue sphere-like cargo (bottom). The scale bar is 20 micrometers. By specifying the position of the light irradiation, it is possible to accumulate the cargo at the designated destination (right). The scale bar is 50 micrometers (Mousumi Akter, et al. Science Robotics. April 20, 2022). Image credits: Mousumi Akter, et al. Science Robotics. April 20, 2022.

The researchers want to give brains to the molecular robots

But this is only the beginning for the research team. After successfully demonstrating the transportation ability of their micro-machines, the scientists at Hokkaido University now look forward to adding more powerful sensors and introducing artificial intelligence in the molecular swarm system so that the micro-robots could have strong eyesight and perform multiple complex tasks together. Professor Kakugo explained that the next step is to make the robots smarter:

“We believe it is also possible to introduce brain-like units or artificial intelligence to these robots by adding multiple molecular units (molecular reservoir system, molecular computing system) or sensors and that is our next step,” the researcher explains.

Kakugo and his team believe that molecular robots have great potential. In the near future, they could be used as an effective means to transport cargo, deliver drugs, collect micro-contaminants from the environment, and assemble nano-parts. Moreover, such robotic swarms can also benefit molecular power-generation devices and micro-devices which detect pathogens.   

There is no doubt that molecular robot swarms can transform industries like healthcare and robotics. The demonstration by Dr. Akter, Professor Kakugo, and their team is a fantastic start in this direction. However, the development and implementation of highly-efficient molecular robots are much more complicated than that of life-sized robots. So it would be interesting to see which kind of robots first become mainstream in the future — the swarms or the “droid” types. 

The study was published in Science Robotics.

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.