homehome Home chatchat Notifications


Artificial muscle lifts 1,000 times its own weight, brings us closer to humanoid bots

A step closer to forging our new robotic overlords.

Tibi Puiu
September 21, 2017 @ 1:06 pm

share Share

Scientists have come up with an artificial muscle that, in many respects, responds like natural muscle. These artificial muscles could enable humanoid robots to move and act with more grace, possibly mimicking real humans.

The artificial muscle seen here performing biceps motion in order to lift a skeleton's arm to a 90 degree position. Credit: Aslan Miriyev/Columbia Engineering.

The artificial muscle seen here performing biceps motion in order to lift a skeleton’s arm to a 90 degree position. Credit: Aslan Miriyev/Columbia Engineering.

Before robots or androids really permeate society, designers have to make them more human-like. This is not only to make them more familiar or less creepy, but also to improve safety. When working side by side on an assembly line or at home, you really don’t want to injure yourself every time you come across a robot’s metal rods. Ideally, robots that interact often with humans ought to be covered in soft, artificial tissue.

Making more dexterous robots

With this goal in mind, a team led by Aslan Miriyev, a postdoctoral researcher in Columbia University’s Creative Machines Lab, developed a synthetic muscle that pushes, pulls, or twists in response to heat.

Experiments suggest the artificial muscle is capable of lifting 1,000 times its own weight. Even more remarkably, it can expand 15 times more than natural muscle and is also three times stronger.

Beyond robots, the 3-D printed artificial muscle might see a better life augmenting movement for people with disabilities. Since it’s made from biocompatible, relatively inexpensive materials, the artificial muscle could be surgically embedded or used as an exoskeleton prosthesis. No external compressor or high voltage equipment is required, as in previous muscles.

“Our soft functional material may serve as robust soft muscle, possibly revolutionizing the way that soft robotic solutions are engineered today,” said Miriyev. “It can push, pull, bend, twist, and lift weight. It’s the closest artificial material equivalent we have to a natural muscle.

Soft actuator technologies typically use pneumatic or hydraulic inflation to expand elastomer skin with air or liquid. The compressors or pressure-regulating equipment, however, prevents the kind of miniaturization we’d like to see in a humanoid robot that moves gracefully and fluidly like a human would.

To get around bulky actuator equipment, the scientists designed a silicone rubber matrix which expands or contracts as ethanol enters or exits micro-bubbles embedded inside the material. The artificial muscle is actuated with a low-power 8V resistive wire. When heated to 80°C, the artificial muscle could expand to up to 900% its initial size, allowing it to perform motion.

“We’ve been making great strides toward making robots minds, but robot bodies are still primitive,” said Hod Lipson. “This is a big piece of the puzzle and, like biology, the new actuator can be shaped and reshaped a thousand ways. We’ve overcome one of the final barriers to making lifelike robots.”

The team now plans on improving their design. On the drawing board is replacing the embedded wire with conductive materials, accelerating the response time, and increasing the artificial muscle’s shelf life. Ultimately, machine learning algorithms will take control of the muscle’s contractive motion in order to replicate natural movement as closely as possible.

share Share

Archaeologists Find Neanderthal Stone Tool Technology in China

A surprising cache of stone tools unearthed in China closely resembles Neanderthal tech from Ice Age Europe.

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.