homehome Home chatchat Notifications


A robot near you might soon have a tail to help with balance

My pets already have them so why not?

Alexandru Micu
November 4, 2020 @ 7:01 pm

share Share

New research from the Beijing Institute of Technology wants to steal the design of one of nature’s best balancing devices — the tail — and put it in robots.

A schematic outlining the design of the self-balancing robot tail. Image credits Zhang, Ren & Cheng.

Nature has often faced the same issues that designers and engineers grapple with in their work, but it has had much more time and resources at its disposal to fix them. So researchers in all fields of science aren’t ashamed of stealing some of its solutions when faced with a dead end. Over the past decades, roboticists have routinely had issues in making their creations keep their balance in any but the most ideal of settings. The humble tail might help break that impasse.

Tail tale

The bio-inspired, tail-like mechanism developed by the team can help their robot maintain balance in dynamic environments, the authors explain. The bot is made up of the main body, two wheels, and the tail component. This latter one is controlled by an “adaptive hierarchical sliding mode controller”, a fancy bit of code that allows it to rotate in different directions in an area parallel to the wheels.

In essence, it calculates and implements the tail motions needed to ensure the robot remains stable while moving around its environment.

There’s obviously some very complex math involved here. The authors explain that their system uses estimates of uncertainty in order to guide the tail. This is based on a theorem called the Lyapunov stability theorem, a theoretical framework that describes the stability of systems in motion. The tail then moves in specific patterns that are designed to increase the robot’s stability.

Most approaches to the issue of balancing two-wheeled vehicles today rely on collecting a vehicle’s body altitude data using an inertial measurement unit (IMU), a device that can measure forces acting on the robot’s body. This data is then processed and the results are used to determine a balancing strategy, which typically involves adjusting the robot’s tilt. These, the authors explain, typically work well enough — but they wanted to offer up an alternative that doesn’t involve tilting the robot’s body.

So far, the tail’s performance has only been evaluated in computer simulations, not in physical ones. However, these found it to be “very promising”, as it was able to stabilize a simulated robot who lost its balance within around 3.5 seconds. The team hopes that in the future, their tail will be used to make new or preexisting robot designs even more stable

The authors are now working on a prototype of the robot so that they can test its performance.

The paper “Control and application of tail-like mechanism in self-balance robot” has been published in the Proceedings of 2020 Chinese Intelligent Systems Conference.

share Share

Your gut has a secret weapon against 'forever chemicals': microbes

Our bodies have some surprising allies sometimes.

High IQ People Are Strikingly Better at Forecasting the Future

New study shows intelligence shapes our ability to forecast life events accurately.

Newborns Feel Pain Long Before They Can Understand It

Tiny brains register pain early, but lack the networks to interpret or respond to it

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Your Personal Air Defense System Is Here and It’s Built to Vaporize Up to 30 Mosquitoes per Second with Lasers

LiDAR-guided Photon Matrix claims to fell 30 mosquitoes a second, but questions remain.

Scientists Ranked the Most Hydrating Drinks and Water Didn't Win

Milk is more hydrating than water. Here's why.

Methane Leaks from Fossil Fuels Hit Record Highs. And We're Still Looking the Other Way

Powerful leaks, patchy action, and untapped fixes keep methane near record highs in 2024.

Astronomers Found a Star That Exploded Twice Before Dying

A rare double explosion in space may rewrite supernova science.

This Enzyme-Infused Concrete Could Turn Buildings into CO2 Sponges

A new study offers a greener path for concrete, the world’s dirtiest building material.

Buried in a Pot, Preserved by Time: Ancient Egyptian Skeleton Yields First Full Genome

DNA from a 4,500-year-old skeleton reveals ancestry links between North Africa and the Fertile Crescent.