homehome Home chatchat Notifications


Researchers can use fiber-optic cables to create detailed maps of the subsurface

Talk about a repurposing!

Mihai Andrei
February 24, 2022 @ 11:27 am

share Share

Telecom cables are getting a second job: analyzing earthquake data to map the subsurface.

Monitoring physical parameters of the subsurface using Credit: Yang et al., 2022, https://doi.org/10.1029/2021GL096503

Much of what we know about our planet’s interior comes from earthquakes. Whenever an earthquake happens, it sends out waves that we can detect using special instruments called seismometers. Based on the way these waves propagate, geophysicists can then infer various properties and structures from the subsurface. But precise seismometers can be expensive to install and manage, and researchers are increasingly looking at an unlikely alternative: fiber optic cables.

Fiber optic cables are the backbone of modern internet — they’re what give you high-speed internet (if you’re fortunate enough to have high-speed internet, that is). These cables are virtually identical to regular electric ones, with one key difference: they have one or more optical fibers that are used to carry light. Herein lies the key to their usage as seismometers.

When an earthquake happens, it makes the cables vibrate, and it changes the way light propagates through the cable. Researchers can monitor how these pulses scatter as they travel through the cable, calculating small changes in the fiber material. The first, simple application is that the method can be used to detect earthquakes, but a more finessed application is that you could use the information from seismic waves to “map” the subsurface (essentially mapping specific properties of the subsurface).

It’s not the first time something like this has been proposed. It’s been a pretty hot topic in the seismology community for the past few years, especially in California. In the new study, researchers used an approach of using distributed acoustic sensing (DAS) to construct a high-resolution image of the first few hundred meters of the subsurface.

There’s another advantage to this method: you don’t necessarily need an earthquake for it to work; if you have something else that produces vibrations, that too can work. Although the louder the vibrations the better, it can work with all sorts of vibrations. For instance, the method was used to monitor the changes in car traffic during COVID-19 lockdowns and even to name the loudest marching band at the 2020 Rose Parade.

The study, led by Yan Yang Caltech Seismological Laboratory, used DAS to monitor vibrations coming from the traffic. They then used the data to create a shear velocity model that was around 100 times higher resolution than models obtained with typical data. This model showed that along the length of the fiber, the areas of more ground motion generally corresponded with areas where shear velocity was lower.

Previous studies have shown that ground shaking is amplified in some geological structures, but mapping these structures has proved challenging DAS promises to be an affordable and high-accurate method that could be put to great use in mapping urban earthquake hazards, the researchers conclude.

The study was published in Geophysical Research Letters.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

America’s Favorite Christmas Cookies in 2024: A State-by-State Map

Christmas cookie preferences are anything but predictable.

The 2,500-Year-Old Gut Remedy That Science Just Rediscovered

A forgotten ancient clay called Lemnian Earth, combined with a fungus, shows powerful antibacterial effects and promotes gut health in mice.

Should we treat Mars as a space archaeology museum? This researcher believes so

Mars isn’t just a cold, barren rock. Anthropologists argue that the tracks of rovers and broken probes are archaeological treasures.

Hidden for Centuries, the World’s Largest Coral Colony Was Mistaken for a Shipwreck

This massive coral oasis offers a rare glimmer of hope.

This Supermassive Black Hole Shot Out a Jet of Energy Unlike Anything We've Seen Before

A gamma-ray flare from a black hole 6.5 billion times the Sun’s mass leaves scientists stunned.

Scientists Say Antimatter Rockets Could Get Us to the Stars Within a Lifetime — Here’s the Catch

The most explosive fuel in the universe could power humanity’s first starship.

Superflares on Sun-Like Stars Are Much More Common Than We Thought

Sun-like stars release massive quantities of radiation into space more often than previously believed.

This Wild Quasiparticle Switches Between Having Mass and Being Massless. It All Depends on the Direction It Travels

Scientists have stumbled upon the semi-Dirac fermion, first predicted 16 years ago.

New Study Suggests GPT Can Outsmart Most Exams, But It Has a Weakness

Professors should probably start changing how they evaluate students.