homehome Home chatchat Notifications


Decade-old debate put to rest with new measurement of proton diameter

They're not big.

Alexandru Micu
September 6, 2019 @ 9:27 pm

share Share

We now have an accurate measurement of how large protons are.

Image via Pixabay.

Back in 2010, a team of physicists set their field (figuratively) on fire. They measured the radius of a proton and found it to be 4% smaller than expected. Physicists are very passionate about this kind of stuff and it sparked a huge debate. Now, researchers from York University have put the debate to rest by taking a precise measurement of the size of the proton.

How big is something very small?

“The level of precision required to determine the proton size made this the most difficult measurement our laboratory has ever attempted,” said Distinguished Research Professor Eric Hessels, Department of Physics & Astronomy, who led the study.

The exact size of the proton is an important unsolved problem in fundamental physics today, one which the present study addresses. The team reports that protons measure 0.833 femtometers in diameter (a femtometer is one-trillionth of a millimeter). This measurement is roughly 5% percent smaller than the previously-accepted radius value.

“After eight years of working on this experiment, we are pleased to record such a high-precision measurement that helps to solve the elusive proton-radius puzzle,” said Hessels.

The exact measurement of the proton’s radius would have significant consequences for the understanding of the laws of physics, such as the theory of quantum electrodynamics, which describes how light and matter interact. Hessels says that the study didn’t exist in a vacuum — three previous studies were pivotal in attempting to resolve the discrepancy between electron-based and muon-based determinations of the proton size.

The 2010 study was the first to use muonic hydrogen to determine the proton size (whereas previous experiments used regular hydrogen). Hydrogen atoms are made up of one proton and one electron In the 2010 experiment, the team replaced the electron with a muon, a related (but heavier) particle.

While a 2017 study using simple hydrogen agreed with the 2010 muon-based result, a 2018 experiment, also using hydrogen, supported the pre-2010 value. Hessels and his team spent the last eight years trying to get to the bottom of the issue and understand why researchers were getting different results when measuring with muons rather than electrons.

The team carried out a high-precision measurement using a technique they developed for this purpose, the frequency-offset separated oscillatory fields technique (FOSOF). In essence, they used a fast beam of hydrogen atoms created by shooting protons through hydrogen molecules. Their result agrees with the value found in the 2010 study.

The paper “A measurement of the atomic hydrogen Lamb shift and the proton charge radius” has been published in the journal Science.

share Share

Evolution just keeps creating the same deep-ocean mutation

Creatures at the bottom of the ocean evolve the same mutation — and carry the scars of human pollution

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.

These researchers counted the trees in China using lasers

The answer is 142 billion. Plus or minus a few, of course.

New Diagnostic Breakthrough Identifies Bacteria With Almost 100% Precision in Hours, Not Days

A new method identifies deadly pathogens with nearly perfect accuracy in just three hours.

This Tamagotchi Vape Dies If You Don’t Keep Puffing

Yes. You read that correctly. The Stupid Hackathon is an event like no other.

This Tiny Nuclear Battery Could Last for Thousands of Years Without Charging

The radiocarbon battery is supposed to be safe for everyday operations.

Wild Chimps Build Flexible Tools with Impressive Engineering Skills

Chimpanzees select and engineer tools with surprising mechanical precision to extract termites.

Archaeologists in Egypt discovered a 3,600-Year-Old pharaoh. But we have no idea who he is

An ancient royal tomb deep beneath the Egyptian desert reveals more questions than answers.

Researchers create a new type of "time crystal" inside a diamond

“It’s an entirely new phase of matter.”