homehome Home chatchat Notifications


Pluto's ocean might be held in place by a thin layer of gas

Comfortably insulated.

Mihai Andrei
May 20, 2019 @ 10:40 pm

share Share

This might also mean that there are many more oceans in the universe than previously thought.

PIA21863 Pluto.

Digital rendering, with exaggerated relief and color of Pluto. Based on close-up images taken by NASA’s New Horizons spacecraft in 2015. Credits NASA/Johns Hopkins University Applied Physics Laboratory.

It’s almost shocking to think how much we know about Pluto. The tiny ex-ex-planet was studied in unprecedented detail by the New Horizons missions that brushed right by it. The images sent by the shuttled showed Pluto’s topography in great detail, revealing some unexpected details. For instance, scientists were surprised by a white-colored ellipsoidal basin named Sputnik Planitia, located near the equator and roughly the size of Texas. The basin appears to be very thin, which would suggest the presence of a subsurface ocean beneath it. However, if this was true, researchers would have expected it to be long-frozen by now, which does not seem to be the case.

Now, researchers believe that they have an idea what happened.

Shunichi Kamata and colleagues from several Japanese universities propose that an “insulating layer” of gas hydrates exists beneath the icy surface of Sputnik Planitia. Gas hydrates are a crystalline solid formed from water and gas. They look and behave very much like ice, but contain high amounts of methane gas. They also have very low thermal conductivity, which means that they can essentially act as an insulator.

Since actually going to Pluto and drilling it on-site is not really an option, researchers tested their hypothesis with computer simulations. They generated a model of Pluto and its subsurface ice starting 4.6 billion years ago, when the solar system began to form.

The simulations confirmed that without an insulator, the subsurface ice would have long frozen over.

It also showed that the thermal and structural evolution of Pluto’s interior and the time required for a subsurface ocean to freeze and for the icy shell covering it to become uniformly thick. They simulated two scenarios: one where an insulating layer of gas hydrates existed between the ocean and the icy shell, and one where it did not.

The study has been published in Nature Geoscience. DOI: 10.1038/s41561-019-0369-8

share Share

New research shows how Trump uses "strategic victimhood" to justify his politics

How victimhood rhetoric helped Donald Trump justify a sweeping global trade war

Biggest Modern Excavation in Tower of London Unearths the Stories of the Forgotten Inhabitants

As the dig deeper under the Tower of London they are unearthing as much history as stone.

Millions Of Users Are Turning To AI Jesus For Guidance And Experts Warn It Could Be Dangerous

AI chatbots posing as Jesus raise questions about profit, theology, and manipulation.

Can Giant Airbags Make Plane Crashes Survivable? Two Engineers Think So

Two young inventors designed an AI-powered system to cocoon planes before impact.

First Food to Boost Immunity: Why Blueberries Could Be Your Baby’s Best First Bite

Blueberries have the potential to give a sweet head start to your baby’s gut and immunity.

Ice Age People Used 32 Repeating Symbols in Caves Across the World. They May Reveal the First Steps Toward Writing

These simple dots and zigzags from 40,000 years ago may have been the world’s first symbols.

NASA Found Signs That Dwarf Planet Ceres May Have Once Supported Life

In its youth, the dwarf planet Ceres may have brewed a chemical banquet beneath its icy crust.

Nudists Are Furious Over Elon Musk's Plan to Expand SpaceX Launches in Florida -- And They're Fighting Back

A legal nude beach in Florida may become the latest casualty of the space race

A Pig Kidney Transplant Saved This Man's Life — And Now the FDA Is Betting It Could Save Thousands More

A New Hampshire man no longer needs dialysis thanks to a gene-edited pig kidney.

The Earliest Titanium Dental Implants From the 1980s Are Still Working Nearly 40 Years Later

Longest implant study shows titanium roots still going strong decades later.