homehome Home chatchat Notifications


New research produces a viable, biodegradable alternative to plastic

This might help us clamp down on plastic pollution.

Alexandru Micu
April 9, 2019 @ 6:40 pm

share Share

Researchers at The Ohio State University may have developed a viable alternative to plastic — one that breaks down naturally.

Material comparison.

The new bioplastic and rubber blend devised by Ohio State researchers proved much more durable than the bioplastic on its own
Image credits The Ohio State University.

To say that humanity has a plastic problem would be an understatement. Plastic waste litters the oceans, steadily builds up in landfills, and it’s not going away (by itself). Needless to say, the search for a viable, biodegradable replacement for plastic is quite a heated one.

New research from The Ohio State University may have come up with one such material. The team combined natural rubber with bioplastics to create a novel material that could be everything we, and the food industry, needs.

Bendy and strong

“Previous attempts at this combination were unsuccessful because the softness of the rubber meant the product lost a lot of strength in the process,” said lead author Xiaoying Zhao, a postdoctoral researcher in Ohio State’s Department of Food Science and Technology.

About 90% of today’s plastics are petroleum-based and not biodegradable, which is a major environmental concern. So far, attempts to make viable plastic replacements from renewable sources haven’t been very successful — mostly due to processing and economic constraints. Among the obstacles, products to date have been too brittle for food packaging.

The team’s product, derived from microbial fermentation and strengthened with natural rubber, would perform largely like conventional plastic, and, according to the team, it is probably the greatest success in this area so far.

So, how did they do it? Well, the team started by melting rubber together with a plant-based thermoplastic called PHBV, organic peroxide, and another additive called trimethylolpropane triacrylate (TMPTA). The resulting material was 75% tougher and 100% more flexible than PHBV on its own. These two properties combined make it much better suited for food packaging, a massive contributor to plastic waste.

The extra strength and flexibility are a huge improvement, as previous attempts to combine rubber and PHBV resulted in materials that were too weak to be used in food packaging — they couldn’t withstand any step, be it processing, shipping, or handling in stores and homes. It was especially a problem for containers used for freezing and then microwaving, said the study’s senior author, Yael Vodovotz, a professor of food science and technology at Ohio State.

Other attempts at making this type of rubber-enhanced bioplastic have reduced the strength of the PHBV by as much as 80%, Zhao adds. The team’s approach only reduced the material’s strength by 30%, which is still manageable. However, what the team needed was to get their material more flexible than previous attempts without a significant reduction in strength, as flexibility is very important for plastic films used to package everything from fresh produce to frozen foods, she said.

“Imagine trying to pull a block of concrete apart with your hands. That’s testing its strength. But karate chopping it with your hand or foot is testing its toughness—how easily it breaks,” explains study co-author Katrina Cornish, an expert in natural rubber and professor of horticulture and crop science at Ohio State.

“You can never pull [the new material] apart, but if you’re strong enough you can break it.”

The team wants to continue researching which other biodegradable and environmentally-conscious materials might be used as fillers to further strengthen their composite material. Some of the things being considered are tomato skins, eggshells, and the “cake” left behind after a fellow researcher extracts oil from spent coffee grounds. They’re even considering the use of invasive grasses in their material, which would help solve another environmental issue at the same time.

“We want something that would otherwise go to waste that is sustainable and also relatively cheap,” said the study’s senior author, Yael Vodovotz, a professor of food science and technology at Ohio State. “We could dry them, grind them up and potentially use these grasses as a fibrous filler,” Vodovotz said.

Beyond packaged foods, a bioplastic could potentially be used in other food-related applications such as utensils and cutting boards or gloves for those working in food service. It could also see use as a building material, or to make parts for cars and airplanes.

“As we get closer and closer to working with food manufacturers, there are specific questions our potential partners are asking,” Vodovotz said. “We have to be very careful about what we use in this process in order to meet their needs, and they have very specific parameters.”

The paper “Synergistic Mechanisms Underlie the Peroxide and Coagent Improvement of Natural-Rubber-Toughened Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Mechanical Performance” has been published in the journal Polymers.

share Share

Your gut has a secret weapon against 'forever chemicals': microbes

Our bodies have some surprising allies sometimes.

High IQ People Are Strikingly Better at Forecasting the Future

New study shows intelligence shapes our ability to forecast life events accurately.

Cheese Before Bed Might Actually Be Giving You Nightmares

Eating dairy or sweets late at night may fuel disturbing dreams, new study finds.

Your Personal Air Defense System Is Here and It’s Built to Vaporize Up to 30 Mosquitoes per Second with Lasers

LiDAR-guided Photon Matrix claims to fell 30 mosquitoes a second, but questions remain.

Scientists Ranked the Most Hydrating Drinks and Water Didn't Win

Milk is more hydrating than water. Here's why.

Methane Leaks from Fossil Fuels Hit Record Highs. And We're Still Looking the Other Way

Powerful leaks, patchy action, and untapped fixes keep methane near record highs in 2024.

Astronomers Found a Star That Exploded Twice Before Dying

A rare double explosion in space may rewrite supernova science.

This Enzyme-Infused Concrete Could Turn Buildings into CO2 Sponges

A new study offers a greener path for concrete, the world’s dirtiest building material.

Buried in a Pot, Preserved by Time: Ancient Egyptian Skeleton Yields First Full Genome

DNA from a 4,500-year-old skeleton reveals ancestry links between North Africa and the Fertile Crescent.

AI Helped Decode a 3,000-Year-Old Babylonian Hymn That Describes a City More Welcoming Than You’d Expect

Rediscovered text reveals daily life and ideals of ancient Babylon.